orthogonal.polynomials {orthopolynom} | R Documentation |
Create orthogonal polynomials
Description
Create list of orthogonal polynomials from the following recurrence relations for
.
We require that and
.
The coefficients are the column vectors
,
,
and
.
Usage
orthogonal.polynomials(recurrences)
Arguments
recurrences |
a data frame containing the parameters of the orthogonal polynomial recurrence relations |
Details
The argument is a data frame with rows and four named columns.
The column names are
c
, d
, e
and f
.
These columns correspond to the column vectors described above.
Value
A list of polynomial objects
1 |
Order 0 orthogonal polynomial |
2 |
Order 1 orthogonal polynomial |
...
n+1 |
Order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
Examples
###
### generate the recurrence relations for T Chebyshev polynomials of orders 0 to 10
###
r <- chebyshev.t.recurrences( 10, normalized=FALSE )
print( r )
###
### generate the list of orthogonal polynomials
###
p.list <- orthogonal.polynomials( r )
print( p.list )