jacobi.p.weight {orthopolynom} | R Documentation |
Weight function for the Jacobi polynomial
Description
This function returns the value of the weight function for the order k
Jacobi polynomial, P_k^{\left( {\alpha ,\beta } \right)} \left( x \right)
.
Usage
jacobi.p.weight(x,alpha,beta)
Arguments
x |
the function argument which can be a vector |
alpha |
the first polynomial parameter |
beta |
the second polynomial parameter |
Details
The function takes on non-zero values in the interval \left( -1,1 \right)
. The formula
used to compute the weight function is as follows.
w\left( x \right) = \left( {1 - x} \right)^\alpha \;\left( {1 + x} \right)^\beta
Value
The value of the weight function
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
Examples
###
### compute the Jacobi P weight function for argument values
### between -1 and 1
###
x <- seq( -1, 1, .01 )
y <- jacobi.p.weight( x, 2, 2 )