hermite.he.inner.products {orthopolynom} | R Documentation |
Inner products of Hermite polynomials
Description
This function returns a vector with n + 1
elements containing the inner product of
an order k
Hermite polynomial, He_k \left( x \right)
,
with itself (i.e. the norm squared) for orders k = 0,\;1,\; \ldots ,\;n
.
Usage
hermite.he.inner.products(n)
Arguments
n |
integer value for the highest polynomial order |
Details
The formula used to compute the inner products is as follows.
h_n = \left\langle {He_n |He_n } \right\rangle = \sqrt {2\,\pi } \;n!
.
Value
A vector with n + 1
elements
1 |
inner product of order 0 orthogonal polynomial |
2 |
inner product of order 1 orthogonal polynomial |
...
n+1 |
inner product of order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
Examples
###
### generate the inner products vector for the
### scaled Hermite polynomials of orders 0 to 10
###
h <- hermite.he.inner.products( 10 )
print( h )