glaguerre.polynomials {orthopolynom} | R Documentation |
Create list of generalized Laguerre polynomials
Description
This function returns a list with n + 1
elements containing
the order n
generalized Laguerre polynomials, L_n^{\left( \alpha \right)} \left( x \right)
,
for orders k = 0,\;1,\; \ldots ,\;n
.
Usage
glaguerre.polynomials(n, alpha, normalized=FALSE)
Arguments
n |
integer value for the highest polynomial order |
alpha |
numeric value for the polynomial parameter |
normalized |
a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials |
Details
The function glaguerre.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
Value
A list of n + 1
polynomial objects
1 |
order 0 generalized Laguerre polynomial |
2 |
order 1 generalized Laguerre polynomial |
...
n+1 |
order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
See Also
glaguerre.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
Examples
###
### gemerate a list of normalized generalized Laguerre polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
normalized.p.list <- glaguerre.polynomials( 10, 1, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized generalized Laguerre polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
unnormalized.p.list <- glaguerre.polynomials( 10, 1, normalized=FALSE )