ghermite.h.polynomials {orthopolynom} | R Documentation |
Create list of generalized Hermite polynomials
Description
This function returns a list with n + 1
elements containing
the order k
generalized Hermite polynomials, H_k^{\left( \mu \right)} \left( x \right)
,
for orders k = 0,\;1,\; \ldots ,\;n
.
Usage
ghermite.h.polynomials(n, mu, normalized = FALSE)
Arguments
n |
integer value for the highest polynomial order |
mu |
numeric value for the polynomial parameter |
normalized |
boolean value which, if TRUE, returns recurrence relations for normalized polynomials |
Details
The parameter \mu
must be greater than -0.5.
The function ghermite.h.recurrences
produces a data frame with the recurrence relation parameters
for the polynomials. If the normalized
argument is FALSE, the
function orthogonal.polynomials
is used to construct the list of orthogonal polynomial objects.
Otherwise, the function orthonormal.polynomials
is used to construct the
list of orthonormal polynomial objects.
Value
A list of n + 1
polynomial objects
1 |
order 0 generalized Hermite polynomial |
2 |
order 1 generalized Hermite polynomial |
...
n+1 |
order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Alvarez-Nordase, R., M. K. Atakishiyeva and N. M. Atakishiyeva, 2004. A q-extension of the generalized Hermite polynomials with continuous orthogonality property on R, International Journal of Pure and Applied Mathematics, 10(3), 335-347.
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.
See Also
ghermite.h.recurrences
,
orthogonal.polynomials
,
orthonormal.polynomials
Examples
###
### gemerate a list of normalized generalized Hermite polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
normalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized generalized Hermite polynomials of orders 0 to 10
### polynomial parameter is 1.0
###
unnormalized.p.list <- ghermite.h.polynomials( 10, 1, normalized=FALSE )
print( unnormalized.p.list )