chebyshev.t.recurrences {orthopolynom}R Documentation

Recurrence relations for Chebyshev polynomials

Description

This function returns a data frame with n + 1 rows and four named columns containing the coefficient vectors c, d, e and f of the recurrence relations for the order k Chebyshev polynomial of the first kind, T_k \left( x \right), for orders k = 0,\;1,\; \ldots ,\;n.

Usage

chebyshev.t.recurrences(n, normalized=FALSE)

Arguments

n

integer value for the highest polynomial order

normalized

boolean value which, if TRUE, returns recurrence relations for normalized polynomials

Value

A data frame with the recurrence relation parameters.

Author(s)

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

chebyshev.t.inner.products

Examples

###
### generate the recurrence relations for 
### the normalized T Chebyshev polynomials
### of orders 0 to 10
###
normalized.r <- chebyshev.t.recurrences( 10, normalized=TRUE )
print( normalized.r )
###
### generate the recurrence relations for 
### the normalized T Chebyshev polynomials
### of orders 0 to 10
###
unnormalized.r <- chebyshev.t.recurrences( 10, normalized=FALSE )
print( unnormalized.r )

[Package orthopolynom version 1.0-6.1 Index]