orthoDr_reg {orthoDr} | R Documentation |
Semiparametric dimension reduction method from Ma & Zhu (2012).
Description
Performs the semiparametric dimension reduction method associated with Ma & Zhu (2012).
Usage
orthoDr_reg(
x,
y,
method = "sir",
ndr = 2,
B.initial = NULL,
bw = NULL,
keep.data = FALSE,
control = list(),
maxitr = 500,
verbose = FALSE,
ncore = 0
)
Arguments
x |
A |
y |
A |
method |
Dimension reduction methods (semi-): |
ndr |
The number of directions |
B.initial |
Initial |
bw |
A Kernel bandwidth, assuming each variables have unit variance |
keep.data |
Should the original data be kept for prediction. Default
is |
control |
A list of tuning variables for optimization.
|
maxitr |
Maximum number of iterations |
verbose |
Should information be displayed |
ncore |
Number of cores for parallel computing. The default is the maximum number of threads. |
Value
A orthoDr
object consisting of list
with named elements:
B |
The optimal |
fn |
The final functional value |
itr |
The number of iterations |
converge |
convergence code |
References
Ma, Y., & Zhu, L. (2012). A semiparametric approach to dimension reduction. Journal of the American Statistical Association, 107(497), 168-179. DOI: doi:10.1080/01621459.2011.646925
Ma, Y., & Zhu, L. (2013). Efficient estimation in sufficient dimension reduction. Annals of statistics, 41(1), 250. DOI: doi:10.1214/12-AOS1072
Examples
# generate some regression data
set.seed(1)
N <- 100
P <- 4
dataX <- matrix(rnorm(N * P), N, P)
Y <- -1 + dataX[, 1] + rnorm(N)
# fit the semi-sir model
orthoDr_reg(dataX, Y, ndr = 1, method = "sir")
# fit the semi-phd model
Y <- -1 + dataX[, 1]^2 + rnorm(N)
orthoDr_reg(dataX, Y, ndr = 1, method = "phd")