hMave {orthoDr} | R Documentation |
Hazard Mave for Censored Survival Data
Description
This is an almost direct R translation of Xia, Zhang & Xu's (2010) hMave
MATLAB
code. We implemented further options for setting a different initial
value. The computational algorithm does not utilize the orthogonality
constrained optimization.
Usage
hMave(x, y, censor, m0, B0 = NULL)
Arguments
x |
A matrix for features. |
y |
A vector of observed time. |
censor |
A vector of censoring indicator. |
m0 |
number of dimensions to use |
B0 |
initial value of B. This is a feature we implemented. |
Value
A list
consisting of
B |
The estimated B matrix |
cv |
Leave one out cross-validation error |
References
Xia, Y., Zhang, D., & Xu, J. (2010). Dimension reduction and semiparametric estimation of survival models. Journal of the American Statistical Association, 105(489), 278-290. DOI: doi:10.1198/jasa.2009.tm09372
Examples
# generate some survival data
set.seed(1)
P <- 7
N <- 150
dataX <- matrix(runif(N * P), N, P)
failEDR <- as.matrix(cbind(c(1, 1.3, -1.3, 1, -0.5, 0.5, -0.5, rep(0, P - 7))))
T <- exp(dataX %*% failEDR + rnorm(N))
C <- runif(N, 0, 15)
Y <- pmin(T, C)
Censor <- (T < C)
# fit the model
hMave.fit <- hMave(dataX, Y, Censor, 1)
[Package orthoDr version 0.6.8 Index]