predict_with_ci {ormPlot} | R Documentation |
Create a Prediction data.frame with confidence intervals
Description
returns a data.frame
object similar to the Predict
however it adds a column dependent that lists all factor levels with
appropriate confidence intervals calculated for each level. It is similar to
predict.lrm
with type="fitted.ind"
but also generates
selected confidence intervals.
Usage
predict_with_ci(
x,
...,
np = 100,
fun = stats::plogis,
conf.int = 0.95,
boot.type = "bca"
)
Arguments
x |
an object created by |
... |
One or more variables to vary, or single-valued adjustment values.
Specify a variable name without an equal sign to use the default
display range, or any range
you choose (e.g. |
np |
the number of equally-spaced points computed for continuous
predictors that vary, i.e., when the specified value is |
fun |
an optional transformation of the linear predictor.
Specify |
conf.int |
confidence level (highest posterior density interval probability for
Bayesian models). Default is 0.95. Specify |
boot.type |
set to |
Value
a data.frame
See Also
Examples
set.seed(123)
#load the libraries
library(rms)
library(ormPlot)
#make the datadist
dd<-rms::datadist(educ_data)
options(datadist="dd")
#create the model
cran_model <- orm(educ_3 ~ Rural + sex + max_SEP_3 + cran_rzs, data = educ_data)
#get the predictions of the orm model with confidence intervals for all levels
predictiondf<-predict_with_ci(cran_model, cran_rzs, Rural, sex, max_SEP_3)
#show the predictions head
head(predictiondf)
#get the predictions of the orm model with confidence intervals for sex only
predictiondf_sex<-predict_with_ci(cran_model, sex)
#show the predictions head
head(predictiondf_sex)