methods-eigen {ordr} | R Documentation |
Functionality for eigen-decompositions
Description
These methods extract data from, and attribute new data to,
objects of class "eigen"
returned by base::eigen()
when the parameter
only.values
is set to FALSE
or of class "eigen_ord"
returned by
eigen_ord()
.
Usage
## S3 method for class 'eigen'
as_tbl_ord(x)
## S3 method for class 'eigen'
recover_rows(x)
## S3 method for class 'eigen'
recover_cols(x)
## S3 method for class 'eigen'
recover_inertia(x)
## S3 method for class 'eigen'
recover_coord(x)
## S3 method for class 'eigen'
recover_conference(x)
## S3 method for class 'eigen_ord'
recover_aug_rows(x)
## S3 method for class 'eigen_ord'
recover_aug_cols(x)
## S3 method for class 'eigen'
recover_aug_coord(x)
## S3 method for class 'eigen_ord'
as_tbl_ord(x)
## S3 method for class 'eigen_ord'
recover_rows(x)
## S3 method for class 'eigen_ord'
recover_cols(x)
## S3 method for class 'eigen_ord'
recover_inertia(x)
## S3 method for class 'eigen_ord'
recover_coord(x)
## S3 method for class 'eigen_ord'
recover_conference(x)
## S3 method for class 'eigen_ord'
recover_aug_rows(x)
## S3 method for class 'eigen_ord'
recover_aug_cols(x)
## S3 method for class 'eigen_ord'
recover_aug_coord(x)
Arguments
x |
An ordination object. |
Details
base::eigen()
usually returns an object of class "eigen"
, which contains
the numerical eigendecomposition without annotations such as row and column
names. To facilitate downstream analysis, eigen_ord()
returns a modified
'eigen' object with row names taken (if available) from the original data and
column names indicating the integer index of each eigenvector.
Value
The recovery generics recover_*()
return core model components, distribution of inertia,
supplementary elements, and intrinsic metadata; but they require methods for each model class to
tell them what these components are.
The generic as_tbl_ord()
returns its input wrapped in the 'tbl_ord'
class. Its methods determine what model classes it is allowed to wrap. It
then provides 'tbl_ord' methods with access to the recoverers and hence to
the model components.
See Also
Other methods for eigen-decomposition-based techniques:
methods-cmds
,
methods-factanal
Other models from the base package:
methods-svd
Examples
# subset QS data to rank variables
qs_ranks <- subset(
qswur_usa,
complete.cases(qswur_usa),
select = 8:13
)
head(qs_ranks)
# eigendecomposition of Kendall correlation matrix
qs_ranks %>%
cor(method = "kendall") %>%
eigen() %>%
print() -> qs_eigen
# recover eigenvectors
get_rows(qs_eigen)
identical(get_cols(qs_eigen), get_rows(qs_eigen))
# wrap as a 'tbl_ord'
as_tbl_ord(qs_eigen)
# same eigendecomposition, preserving row names and adding column names
qs_ranks %>%
cor(method = "kendall") %>%
eigen_ord() %>%
print() -> qs_eigen
# wrap as a 'tbl_ord' and augment with dimension names
augment_ord(as_tbl_ord(qs_eigen))
# decomposition returns pure eigenvectors
get_conference(qs_eigen)