ordinalbayes {ordinalbayes} | R Documentation |
Ordinal Bayesian Regression Models for High-Dimensional Data
Description
Ordinal Bayesian Regression Models for High-Dimensional Data
Usage
ordinalbayes(
formula,
data,
x = NULL,
subset,
center = TRUE,
scale = TRUE,
a = 0.1,
b = 0.1,
model = "regressvi",
gamma.ind = "fixed",
pi.fixed = 0.05,
c.gamma = NULL,
d.gamma = NULL,
alpha.var = 10,
sigma2.0 = NULL,
sigma2.1 = NULL,
coerce.var = 10,
lambda0 = NULL,
nChains = 3,
adaptSteps = 5000,
burnInSteps = 5000,
numSavedSteps = 9999,
thinSteps = 3,
parallel = TRUE,
seed = NULL,
quiet = FALSE
)
Arguments
formula |
an object of class " |
data |
an optional data.frame, list or environment (or object coercible by |
x |
an optional matrix of predictors that are to be penalized in the model fitting process. |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
center |
logical, if TRUE the penalized predictors are centered. |
scale |
logical, if TRUE the penalized predictors are scaled. |
a |
hyperprior for the penalty parameter lambda which is Gamma with parameters |
b |
hyperprior for the penalty parameter lambda which is Gamma with parameters |
model |
Specify which penalized ordinal model to fit as "regressvi", "lasso", "dess", or "normalss". |
gamma.ind |
indicates whether prior for the variable inclusion indicators is "fixed" or "random" (for models "regressvi", "dess", or "normalss"). |
pi.fixed |
constant prior for the variable inclusion indicators is when |
c.gamma |
hyperprior for the variable inclusion indicators is when |
d.gamma |
hyperprior for the variable inclusion indicators is when |
alpha.var |
variance for alpha_k thresholds in the MCMC chain (default 10). |
sigma2.0 |
variance for the spike when |
sigma2.1 |
variance for the slab when |
coerce.var |
variance associated with any unpenalized predictors in the MCMC chain (default 10). |
lambda0 |
parameter value for the spike when |
nChains |
number of parallel chains to run (default 3) |
adaptSteps |
number of iterations for adaptation (default 5,000). |
burnInSteps |
number of iterations of the Markov chain to run (default 5,000). |
numSavedSteps |
number of saved steps per chain (default 9,999). |
thinSteps |
thinning interval for monitors (default 3). |
parallel |
logical, run the MCMC on multiple processors (default TRUE). |
seed |
integer, seed to ensure reproducibility. |
quiet |
logical, when TRUE, suppress output of JAGS (or rjags) when updating models |
Value
results
An object of class runjags
call
Model call
model
Name of the ordinal model that was fit
a
Value the user specified for a
b
Value the user specified for b
featureNames
Names of the penalized predictors
center
Value the user specified for center
scale
Value the user specified for scale
y
Observed ordinal response
x
Matrix of penalized predictors used in model fitting
w
Matrix of unpenalized predictors used in model fitting
gamma.ind
Value the user specified for gamma.ind
pi.fixed
Value the user specified for pi.fixed
if gamma.ind="fixed"
c.gamma
Value the user specified for c.gamma
if gamma.ind="random"
d.gamma
Value the user specified for d.gamma
if gamma.ind="random"
sigma2.0
Value the user specified for sigma2.0
if model="normalss"
sigma2.1
Value the user specified for sigma2.1
if model="normalss"
lambda0
value the user specified for lambda0
if model="dess"
See Also
print.ordinalbayes
, summary.ordinalbayes
, coef.ordinalbayes
Examples
# The number of adaptSteps, burnInSteps, and numSavedSteps was reduced for package testing
data("cesc")
data(reducedSet)
fit<-ordinalbayes(Stage~1, data=cesc, x=cesc[,5:45],
model="regressvi", gamma.ind="fixed", pi.fixed=0.99,
adaptSteps=1000, burnInSteps=1000, nChains=2,
numSavedSteps=2000, thinSteps=2, seed=26)