ordregr {ordgam} | R Documentation |
Fit a proportional odds model for ordinal data
Description
Fit a proportional odds model for ordinal data
Usage
ordregr(
y,
nc = NULL,
Xcal = Xcal,
descending = FALSE,
prior = list(mean = NULL, Prec = NULL),
theta0 = NULL,
ci.level = 0.95
)
Arguments
y |
Vector containing the ordinal response (coded using integers in 1:nc). |
nc |
(optional) Maximum value of |
Xcal |
Design matrix (excluding intercept columns). |
descending |
Logical indicating if the odds of the response taking a value in the upper scale should be preferred over values in the lower scale. |
prior |
(optional) List giving the 'mean' and 'Prec'(ision) of the regression parameters. |
theta0 |
(Optional) Vector containing starting values for the regression parameters. |
ci.level |
Confidence levels of the computed credible intervals for the regression parameters. |
Value
An object of class ordregr.object.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. and Gressani, 0. (2023) Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models. Statistical Modelling. <doi:10.1177/1471082X231181173>. Preprint: <arXiv:2210.01668>.
See Also
Examples
library(ordgam)
data(freehmsData)
Xcal = with(freehmsData, cbind(gndr,eduyrs,age))
mod = ordregr(y=freehmsData$freehms, Xcal=Xcal, descending=TRUE)
print(mod)