ordgam {ordgam} | R Documentation |
Fit of an additive proportional odds model for ordinal data using Laplace approximations and P-splines
Description
Fit of an additive proportional odds model for ordinal data using Laplace approximations and P-splines
Usage
ordgam(
formula,
data,
nc = NULL,
K = 10,
pen.order = 2,
descending = TRUE,
select.lambda = TRUE,
lambda.family = "dgamma",
lambda.optimizer = "nlminb",
lprior.lambda = function(x) dgamma(x, 1, 1e-04, log = TRUE),
theta0 = NULL,
lambda0 = NULL,
ci.level = 0.95,
verbose = FALSE
)
Arguments
formula |
A model formula |
data |
A data frame containing a column 'y' with the ordinal response (taking integer values) besides the covariates. |
nc |
(optional) Number of categories for the ordinal response. |
K |
Number of B-splines to model each additive term (Default: 10). |
pen.order |
Penalty order (Default: 2). |
descending |
Logical indicating if the odds of the response taking a value in the upper scale should be preferred over values in the lower scale (Default: TRUE). |
select.lambda |
Logical indicating if the penalty parameters should be tuned (Default: TRUE). |
lambda.family |
Prior for <lambda>. Possible choices are "none", "dgamma", "BetaPrime" or "myprior" for a user specified function for the prior of <lambda>. |
lambda.optimizer |
Algorithm used to maximize p(lambda|data). Possible choices are "nlminb","ucminf","nlm","LevMarq" (Default: "nlminb"). |
lprior.lambda |
Log of the prior density for a <lambda> component if |
theta0 |
(Optional) Vector containing starting values for the regression parameters. |
lambda0 |
Vector of penalty parameters for the additive terms (Default: 10 for each additive term). |
ci.level |
Confidence levels of the computed credible intervals for the regression parameters. |
verbose |
Verbose mode (logical) |
Value
an object of type ordgam.object
.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. and Gressani, 0. (2023) Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models. Statistical Modelling. <doi:10.1177/1471082X231181173>. Preprint: <arXiv:2210.01668>.
See Also
Examples
library(ordgam)
data(freehmsData)
mod = ordgam(freehms ~ gndr + s(eduyrs) + s(age),
data=freehmsData, descending=TRUE)
print(mod)
plot(mod)