STapprox {ordgam} | R Documentation |
Skew-t approximation to a density evaluated on a sparse grid
Description
Skew-t approximation to a density evaluated on a sparse grid
Usage
STapprox(x, lfx)
Arguments
x |
Vector containing a grid of values on the density support and covering the posterior mode. |
lfx |
Log density values on the grid |
Value
A list containing
dp
:
Parameters of the approximating skew-t density.fitted.moments
:
Mean, variance, skewness, kurtosis of the approximating skew-t.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. and Gressani, 0. (2023) Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models. Statistical Modelling. <doi:10.1177/1471082X231181173>. Preprint: <arXiv:2210.01668>.
See Also
Examples
library(ordgam)
## Density to be approximated by a Skew-t
dtarget = function(x) dgamma(x,10,2)
curve(dtarget(x),0,15,lwd=2,ylab="Density")
## Values of the target density on a sparse grid
ngrid = 6 ## Sparse grid size
xgrid = seq(2,8,length=ngrid) ## Grid
lfx = log(dtarget(xgrid)) ## Log values
## Skew-t approximation
dp = ordgam::STapprox(xgrid,lfx)$dp
curve(sn::dst(x,dp=dp),add=TRUE,lwd=2,lty=2,col=2)
points(xgrid,exp(lfx))
legend("topright",legend=c("Target density","Skew-t approx."),
col=1:2,lty=1:2,lwd=2,bty="n")
[Package ordgam version 0.9.1 Index]