| order_snormal1 {orders} | R Documentation | 
Random Sampling of k-th Order Statistics from a Skew normal type 1 Distribution
Description
order_snormal1 is used to obtain a random sample of the k-th order statistic from a Skew normal type 1 distribution and some associated quantities of interest.
Usage
order_snormal1(size, k, mu, sigma, nu, tau, n, p = 0.5, alpha = 0.05, ...)
Arguments
| size | numeric, represents the size of the sample. | 
| k | numeric, represents the K-th smallest value from a sample. | 
| mu | numeric, represents the location parameter values. | 
| sigma | numeric, represents scale parameter values. | 
| nu | numeric, represents skewness parameter values | 
| tau | numeric, represents kurtosis tau parameter values. | 
| n | numeric, represents the size of the sample to compute the order statistic from. | 
| p | numeric, represents the 100p percentile for the distribution of the K-th order statistic. Default value is population median, p = 0.5. | 
| alpha | numeric, (1 - alpha) represents the confidence of an interval for the population percentile p of the distribution of the k-th order statistic. Default value is 0.05. | 
| ... | represents others parameters of a Skew normal type 1 distribution. | 
Value
A list with a random sample of order statistics from a Skew normal type 1 Distribution, the value of its join probability density function evaluated in the random sample and an approximate (1 - alpha) confidence interval for the population percentile p of the distribution of the k-th order statistic.
Author(s)
Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>.
References
Gentle, J, Computational Statistics, First Edition. Springer - Verlag, 2009.
Ribgy, R. and Stasinopoulos, M. (2005) Generalized Additive Models for Location Scale and Shape, Journal of the Royal Statistical Society. Applied Statistics, Series C.
Examples
library(orders)
# A sample of size 10 of the 3-th order statistics from a Skew normal type 1 Distribution
order_snormal1(size=10,mu=0,sigma=1,nu=0,tau=2,k=3,n=50,p=0.5,alpha=0.02)