desvar {optimStrat} | R Documentation |
Design variance
Description
Compute the design variance of six sampling strategies.
Usage
desvar(y, x, n, H, d2, d4)
Arguments
y |
a numeric vector giving the values of the study variable. |
x |
a positive numeric vector giving the values of the auxiliary variable. |
n |
a positive integer indicating the desired sample size. |
H |
a positive integer giving the desired number of strata/poststrata. |
d2 |
a number giving the assumed shape of the trend term in the superpopulation model. |
d4 |
a number giving the assumed shape of the spread term in the superpopulation model. |
Details
The design variance of a sample of size n
is computed for six sampling strategies (stsi–HT, \pi
ps–HT, stsi–pos, \pi
ps–pos, stsi–reg and \pi
ps–pos). The strategies are defined assuming that there is an underlying superpopulation model of the form
Y_{k}=\delta_{0}+\delta_{1}x_{k}^{\delta_{2}}+\epsilon_{k}
with E\epsilon_{k}=0
, V\epsilon_{k}=\delta_{3}^{2}x_{k}^{2\delta_{4}}
and Cov(\epsilon_{k},\epsilon_{l})=0
.
The number of strata/poststrata is given by H
.
Value
A vector of length six with the variance of the six sampling strategies.
References
Bueno, E. (2018). A Comparison of Stratified Simple Random Sampling and Probability Proporional-to-size Sampling. Research Report, Department of Statistics, Stockholm University 2018:6. http://gauss.stat.su.se/rr/RR2018_6.pdf.
See Also
expvar
for the expected variance of five sampling strategies.
Examples
f<- function(x,b0,b1,b2,...) {b0+b1*x^b2}
g<- function(x,b3,...) {x^b3}
x<- 1 + sort( rgamma(5000, shape=4/9, scale=108) )
y<- simulatey(x,f,g,dist="gamma",b0=10,b1=1,b2=1.25,b3=0.5,rho=0.90)
desvar(y,x,n=500,H=6,d2=1.25,d4=0.50)
desvar(y,x,n=500,H=6,d2=1.00,d4=1.00)