opticskxi {opticskxi} | R Documentation |
OPTICS k-Xi clustering algorithm
Description
For each largest distance differences on the OPTICS profile, consecutive observations left and right on the OPTICS profile (i.e. lower and higher OPTICS id) will be assigned to 2 different clusters if their distance is below the distance of the edge point. If above, observations are NA. The pts parameter defines a minimum number of observations to form a valley (i.e. cluster). If the number of observations in one valley is smaller than pts, observations are set to NA.
Usage
opticskxi(optics_obj, n_xi, pts = optics_obj$minPts, max_loop = 50,
verbose = FALSE)
Arguments
optics_obj |
Data frame returned by optics |
n_xi |
Number of clusters to define |
pts |
Minimum number of points per clusters |
max_loop |
Maximum iterations to find n_xi clusters |
verbose |
Print the ids of the largest difference considered and cluster information if they define one |
Value
Vector of clusters
See Also
opticskxi_pipeline, ggplot_optics
Examples
data('multishapes')
optics_shapes <- dbscan::optics(multishapes[1:2])
kxi_shapes <- opticskxi(optics_shapes, n_xi = 5, pts = 30)
ggplot_optics(optics_shapes, groups = kxi_shapes)
ggpairs(cbind(multishapes[1:2], kXi = kxi_shapes), group = 'kXi')