quadfun {optiSolve} | R Documentation |
Quadratic Objective Function
Description
Define a quadratic objective function of the form
f(x) = x^T Qx + a^T x + d
Usage
quadfun(Q, a=rep(0, nrow(Q)), d=0, id=1:nrow(Q), name="quad.fun")
Arguments
Q |
Numeric symmetric matrix of the constraint coefficients. |
a |
Numeric vector. |
d |
Numeric value. |
id |
Vector (if present), defining the names of the variables to which the function applies. Each variable name corresponds to one component of |
name |
Name for the objective function. |
Details
Define a quadratic objective function of the form
f(x) = x^T Qx + a^T x + d
Value
An object of class quadFun
.
See Also
The main function for solving constrained programming problems is solvecop
.
Examples
### Quadratic programming with linear constraints ###
### Example from animal breeding ###
### The mean kinship in the offspring x'Qx+d is minized ###
### and the mean breeding value is restricted. ###
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex+BV-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5, 0.40)
dir <- c("==","==",">=")
mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship", id=rownames(myQ)),
lb = lbcon(0, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))
res <- solvecop(mycop, solver="cccp", quiet=FALSE)
validate(mycop, res)
# valid solver status
# TRUE cccp optimal
#
# Variable Value Bound OK?
# -------------------------------------
# Kinship 0.0322 min :
# -------------------------------------
# lower bounds all x >= lb : TRUE
# Sexfemale 0.5 == 0.5 : TRUE
# Sexmale 0.5 == 0.5 : TRUE
# BV 0.4 >= 0.4 : TRUE
# -------------------------------------
[Package optiSolve version 1.0 Index]