opticomp {optiSel} | R Documentation |
Calculates the Optimum Breed Composition
Description
Calculates optimum contributions of breeds to a hypothetical multi-breed population with maximum diversity. Additionally the average kinship within and between breeds and the genetic distances between breeds are computed.
Usage
opticomp(f, phen, obj.fun="NGD", lb=NULL, ub=NULL, ...)
Arguments
f |
Kinship matrix (e.g. a segment based kinship matrix). |
phen |
Data frame with column |
obj.fun |
The objective function to be maximized. For For |
lb |
Named vector providing lower bounds for the contributions of the breeds can be provided. The names of the components are the breed names. The default |
ub |
Named vector providing upper bounds for the contributions of the breeds can be provided. The names of the components are the breed names. The default |
... |
Further parameters passed to the solver solve.QP of R package |
Details
Calculates optimum contributions of breeds to a hypothetical multi-breed population with maximum diversity. Additionally the average kinship within and between breeds and the genetic distances between breeds are computed.
Value
A list with the following components:
bc |
Vector with optimum contributions of breeds to a hypothetical multi-breed population with maximum diversity |
value |
The value of the objective function, i.e. the maximum diversity that can be achieved. |
f |
Matrix containing the mean kinships within and between breeds. |
Dist |
Genetic distances between breeds. |
Author(s)
Robin Wellmann
References
Wellmann, R., Bennewitz, J., Meuwissen, T.H.E. (2014) A unified approach to characterize and conserve adaptive and neutral genetic diversity in subdivided populations. Genetics Selection Evolution. 69, e16
Examples
library(optiSel)
data(map)
data(Cattle)
dir <- system.file("extdata", package = "optiSel")
files <- paste(dir, "/Chr", 1:2, ".phased", sep="")
#####################################################################
# Find the optimum breed composition using segment based kinship #
#####################################################################
IBD <- segIBD(files, minSNP=20, map=map, minL=2.0)
mb <- opticomp(IBD, Cattle, obj.fun="NGD")
#### Optimum breed composition: ###
round(mb$bc,3)
# Angler Fleckvieh Holstein Rotbunt
# 0.469 0.444 0.041 0.046
#### Average kinships within and between breeds: ###
round(mb$f,4)
# Angler Fleckvieh Holstein Rotbunt
#Angler 0.0523 0.0032 0.0414 0.0417
#Fleckvieh 0.0032 0.0625 0.0036 0.0032
#Holstein 0.0414 0.0036 0.1074 0.0894
#Rotbunt 0.0417 0.0032 0.0894 0.1057
#### Genetic distances between breeds: ###
round(mb$Dist,4)
# Angler Fleckvieh Holstein Rotbunt
#Angler 0.0000 0.2329 0.1960 0.1930
#Fleckvieh 0.2329 0.0000 0.2853 0.2844
#Holstein 0.1960 0.2853 0.0000 0.1309
#Rotbunt 0.1930 0.2844 0.1309 0.0000
#####################################################################
# The optimum breed composition depends on the kinship matrix #
# and the objective function: #
#####################################################################
bc <- opticomp(IBD, Cattle, obj.fun="NTD")$bc
round(bc,3)
# Angler Fleckvieh Holstein Rotbunt
# 0.264 0.447 0.148 0.141