optimiseBiomarker {optBiomarker} | R Documentation |
Estimates optimal number of biomarkers at a given error tolerance level for various classification rules
Description
Using interactive control panel (see rpanel
) and 3D
real-time rendering system (rgl
), this package provides a
user friendly GUI for estimating the minimum number of biomarkers
(variables) needed to achieve a given level of accuracy for two-group
classification problems based on microarray data.
Usage
optimiseBiomarker (error,
errorTol = 0.05,
method = "RF", nTrain = 100,
sdB = 1.5,
sdW = 1,
foldAvg = 2.88,
nRep = 3)
Arguments
error |
The database of classification errors. See
|
errorTol |
Error tolerance limit. |
method |
Classification method. Can be one of |
nTrain |
Training set size, i.e., the total number of biological samples in group 1 and group 2. |
sdB |
Biological variation ( |
sdW |
Experimental (technical) variation ( |
foldAvg |
Average fold change of the biomarkers. |
nRep |
Number of technical replications. |
Details
The function optimiseBiomarker
is a user friendly GUI for
interrogating the database of leave-one-out cross-validation errors,
errorDbase
, to estimate optimal number of biomarkers for
microarray based classifications. The database is built on the basis of
simulated data using the classificationError
function. The
function simData
is used for simulating microarray data
for various combinations of factors such as the number of biomarkers,
training set size, biological variation, experimental variation, fold
change, replication, and correlation.
Author(s)
Mizanur Khondoker, Till Bachmann, Peter Ghazal
Maintainer: Mizanur Khondoker mizanur.khondoker@gmail.com.
References
Khondoker, M. R., Till T. Bachmann, T. T., Mewissen, M., Dickinson, P. et al.(2010). Multi-factorial analysis of class prediction error: estimating optimal number of biomarkers for various classification rules. Journal of Bioinformatics and Computational Biology, 8, 945-965.
Breiman, L. (2001). Random Forests, Machine Learning 45(1), 5–32.
Chang, Chih-Chung and Lin, Chih-Jen: LIBSVM: a library for Support Vector Machines, https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
Ripley, B. D. (1996). Pattern Recognition and Neural Networks.Cambridge: Cambridge University Press.
Efron, B. and Tibshirani, R. (1997). Improvements on Cross-Validation: The .632+ Bootstrap Estimator. Journal of the American Statistical Association 92(438), 548–560.
Bowman, A., Crawford, E., Alexander, G. and Bowman, R. W. (2007). rpanel: Simple interactive controls for R functions using the tcltk package. Journal of Statistical Software 17(9).
See Also
Examples
if(interactive()){
data(errorDbase)
optimiseBiomarker(error=errorDbase)
}