array_parameters {oppr} | R Documentation |
Array parameters
Description
Create parameters that consist of multiple numbers. If an attempt is made to create a parameter with conflicting settings then an error will be thrown.
Usage
proportion_parameter_array(name, value, label)
binary_parameter_array(name, value, label)
integer_parameter_array(
name,
value,
label,
lower_limit = rep(as.integer(-.Machine$integer.max), length(value)),
upper_limit = rep(as.integer(.Machine$integer.max), length(value))
)
numeric_parameter_array(
name,
value,
label,
lower_limit = rep(.Machine$double.xmin, length(value)),
upper_limit = rep(.Machine$double.xmax, length(value))
)
Arguments
name |
|
value |
|
label |
|
lower_limit |
|
upper_limit |
|
Details
Below is a list of parameter generating functions and a brief description of each.
- proportion_parameter_array
a parameter that consists of multiple
numeric
values that are between zero and one.- binary_parameter_array
a parameter that consists of multiple
integer
values that are either zero or one.- integer_parameter_array
a parameter that consists of multiple
integer
values.- numeric_parameter_array
a parameter that consists of multiple
numeric
values.
Value
ArrayParameter object.
Examples
# proportion parameter array
p1 <- proportion_parameter_array('prop_array', c(0.1, 0.2, 0.3),
letters[1:3])
print(p1) # print it
p1$get() # get value
p1$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p1$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0.4, 0.5, 0.6), row.names=letters[1:3]) # valid
p1$validate(valid) # check valid input is valid
p1$set(valid) # change value to valid input
print(p1)
# binary parameter array
p2 <- binary_parameter_array('bin_array', c(0L, 1L, 0L), letters[1:3])
print(p2) # print it
p2$get() # get value
p2$id # get id
invalid <- data.frame(value = 1:3, row.names=letters[1:3]) # invalid values
p2$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0L, 0L, 0L), row.names=letters[1:3]) # valid
p2$validate(valid) # check valid input is valid
p2$set(valid) # change value to valid input
print(p2)
# integer parameter array
p3 <- integer_parameter_array('int_array', c(1:3), letters[1:3])
print(p3) # print it
p3$get() # get value
p3$id # get id
invalid <- data.frame(value = rnorm(3), row.names=letters[1:3]) # invalid
p3$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = 5:7, row.names=letters[1:3]) # valid
p3$validate(valid) # check valid input is valid
p3$set(valid) # change value to valid input
print(p3)
# numeric parameter array
p4 <- numeric_parameter_array('dbl_array', c(0.1, 4, -5), letters[1:3])
print(p4) # print it
p4$get() # get value
p4$id # get id
invalid <- data.frame(value = c(NA, 1, 2), row.names=letters[1:3]) # invalid
p4$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(1, 2, 3), row.names=letters[1:3]) # valid
p4$validate(valid) # check valid input is valid
p4$set(valid) # change value to valid input
print(p4)
# numeric parameter array with lower bounds
p5 <- numeric_parameter_array('b_dbl_array', c(0.1, 4, -5), letters[1:3],
lower_limit=c(0, 1, 2))
print(p5) # print it
p5$get() # get value
p5$id# get id
invalid <- data.frame(value = c(-1, 5, 5), row.names=letters[1:3]) # invalid
p5$validate(invalid) # check invalid input is invalid
valid <- data.frame(value = c(0, 1, 2), row.names=letters[1:3]) # valid
p5$validate(valid) # check valid input is valid
p5$set(valid) # change value to valid input
print(p5)