OptimizationProblem-methods {oppr} | R Documentation |
Optimization problem methods
Description
These functions are used to access data from an OptimizationProblem object.
Usage
nrow(x)
## S4 method for signature 'OptimizationProblem'
nrow(x)
ncol(x)
## S4 method for signature 'OptimizationProblem'
ncol(x)
ncell(x)
## S4 method for signature 'OptimizationProblem'
ncell(x)
modelsense(x)
## S4 method for signature 'OptimizationProblem'
modelsense(x)
vtype(x)
## S4 method for signature 'OptimizationProblem'
vtype(x)
obj(x)
## S4 method for signature 'OptimizationProblem'
obj(x)
pwlobj(x)
## S4 method for signature 'OptimizationProblem'
pwlobj(x)
A(x)
## S4 method for signature 'OptimizationProblem'
A(x)
rhs(x)
## S4 method for signature 'OptimizationProblem'
rhs(x)
sense(x)
## S4 method for signature 'OptimizationProblem'
sense(x)
lb(x)
## S4 method for signature 'OptimizationProblem'
lb(x)
ub(x)
## S4 method for signature 'OptimizationProblem'
ub(x)
col_ids(x)
## S4 method for signature 'OptimizationProblem'
col_ids(x)
row_ids(x)
## S4 method for signature 'OptimizationProblem'
row_ids(x)
number_of_branches(x)
## S4 method for signature 'OptimizationProblem'
number_of_branches(x)
get_data(x)
## S4 method for signature 'OptimizationProblem'
get_data(x)
Arguments
x |
OptimizationProblem object. |
Details
The functions return the following data:
- nrow
integer
number of rows (constraints).- ncol
integer
number of columns (decision variables).- ncell
integer
number of cells.- modelsense
character
describing if the problem is to be maximized ("max"
) or minimized ("min"
).- vtype
character
describing the type of each decision variable: binary ("B"
), semi-continuous ("S"
), or continuous ("C"
)- obj
numeric
vector defining the linear components of the objective function.- pwlobj
list
object defining the piece-wise linear components of the objective function.- A
Matrix::dgCMatrix matrix object defining the problem matrix.
- rhs
numeric
vector with right-hand-side linear constraints- sense
character
vector with the senses of the linear constraints ("<="
,">="
,"="
).- lb
numeric
lower bound for each decision variable. Missing data values (NA
) indicate no lower bound for a given variable.- ub
numeric
upper bounds for each decision variable. Missing data values (NA
) indicate no upper bound for a given variable.- number_of_projects
integer
number of projects in the problem.- number_of_actions
integer
number of actions in the problem.- number_of_features
integer
number of features in the problem.- number_of_branches
integer
number of phylogenetic branches in the problem.
Value
list
, Matrix::dgCMatrix, numeric
vector, numeric
vector, or scalar integer
depending on the
method used.