summary.data.list {onlineforecast} | R Documentation |
Summary with checks of the data.list for appropriate form.
Description
Summary including checks of the data.list for appropriate form.
Usage
## S3 method for class 'data.list'
summary(
object,
printit = TRUE,
stopit = TRUE,
nms = names(object),
msgextra = "",
...
)
Arguments
object |
The object to be summarized and checked |
printit |
A boolean deciding if check results tables are printed |
stopit |
A boolean deciding if the function stop with an error if the check is not ok |
nms |
A character vector. If given specifies the variables (vectors or matrices) in object to check |
msgextra |
A character which is added in the printout of an (potential) error message |
... |
Not used |
Details
Prints on table form the result of the checks.
Value
The tables generated.
Checking the data.list for appropriate form:
A check of the time vector t, which must have equidistant time points and no NAs.
Then the results of checks of vectors (observations):
- NAs: Proportion of NAs
- length: Same length as the 't' vector?
- class: The class of the vector
Then the results of checking data.frames and matrices (forecasts):
- maxHorizonNAs: The proportion of NAs for the horizon (i.e. column) with the highest proportion of NAs
- meanNAs: The proportion of NAs of the entire matrix
- nrow: Same length as the 't' vector?
- colnames: Columns must be names 'kx', where 'x' is the horizon (e.g. k12 is 12-step horizon)
- sameclass: Error if not all columns are the same class
- class: Prints the class of the columns if they are all the same
Examples
summary(Dbuilding)
# Some NAs in k1 forecast
D <- Dbuilding
D$Ta$k1[1:1500] <- NA
summary(D)
# Vector with observations not same length as t throws error
D <- Dbuilding
D$heatload <- D$heatload[1:10]
try(summary(D))
# Forecasts wrong count
D <- Dbuilding
D$Ta <- D$Ta[1:10, ]
try(summary(D))
# Wrong column names
D <- Dbuilding
names(D$Ta)[4] <- "xk"
names(D$Ta)[2] <- "x2"
try(summary(D))
# No column names
D <- Dbuilding
names(D$Ta) <- NULL
try(summary(D))
# Don't stop or only print if stopped
onlineforecast:::summary.data.list(D, stopit=FALSE)
try(onlineforecast:::summary.data.list(D, printit=FALSE))
# Only check for specified variables
# (e.g. do like this in model functions to check only variables used in model)
onlineforecast:::summary.data.list(D, nms=c("heatload","I"))