lm_predict {onlineforecast} | R Documentation |
Prediction with an lm forecast model.
Description
Use a fitted forecast model to predict its output variable with transformed data.
Usage
lm_predict(model, datatr)
Arguments
model |
Onlineforecast model object which has been fitted. |
datatr |
Transformed data. |
Details
See the ??ref(recursive updating vignette, not yet available).
Value
The Yhat forecast matrix with a forecast for each model$kseq and for each time point in datatr$t
.
Examples
# Take data
D <- subset(Dbuilding, c("2010-12-15", "2011-01-01"))
D$y <- D$heatload
# Define a model
model <- forecastmodel$new()
model$add_inputs(Ta = "lp(Ta, a1=0.7)", mu = "one()")
# Before fitting the model, define which points to include in the evaluation of the score function
D$scoreperiod <- in_range("2010-12-20", D$t)
# And the sequence of horizons to fit for
model$kseq <- 1:6
# Transform using the mdoel
datatr <- model$transform_data(D)
# See the transformed data
str(datatr)
# The model has not been fitted
model$Lfits
# To fit
lm_fit(model=model, data=D)
# Now the fits for each horizon are there (the latest update)
# For example
summary(model$Lfits$k1)
# Use the fit for prediction
D$Yhat <- lm_predict(model, datatr)
# Plot it
plot_ts(D, c("y|Yhat"), kseq=1)
[Package onlineforecast version 1.0.2 Index]