nuisance.est {onlineCOV} | R Documentation |
Estimate nuisance parameters in the stopping rule.
Description
The function estimates the nuisance parameters required in the stopping rule, through a trainig sample.
Usage
nuisance.est(training.sample)
Arguments
training.sample |
A historical dataset without change points. |
Value
Returns a list of estimated nuisance parameters. See below for more detail.
mu.hat |
The sample mean of the training sample. |
M.hat |
The estimated M dependence. |
cor.hat |
A value used to obtain the standard deviation of the test statistic in the stopping rule. |
References
Li, L. and Li, J. (2020) "Online Change-Point Detection in High-Dimensional Covariance Structure with Application to Dynamic Networks." arXiv:1911.07762.
Examples
p<-200;n0<-200
M<-2
Gam1<-diag(1,p,p)
data_Mat<-matrix(0,n0,p)
L<-M+1
Z<-matrix(rnorm(p*(n0+L-1)),p*(n0+L-1),1)
vec.coef<-1/rep(c(L:1),each=p)
for(j in 1:n0){
Gam.mat<-t(apply(Gam1,1,rep,L))*matrix(vec.coef,ncol=L*p,nrow=p,byrow=TRUE)
data_Mat[j,]<-matrix((Gam.mat%*%Z[((j-1)*p+1):((j+L-1)*p),]),1,p,byrow=FALSE)
}
training.sample<-data_Mat
nuisance.results<-nuisance.est(training.sample)
mu<-nuisance.results$mu.hat
M<-nuisance.results$M.hat
cor<-nuisance.results$cor.hat
[Package onlineCOV version 1.3 Index]