ols_step_backward_aic {olsrr} | R Documentation |
Stepwise AIC backward regression
Description
Build regression model from a set of candidate predictor variables by removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to remove any more.
Usage
ols_step_backward_aic(model, ...)
## Default S3 method:
ols_step_backward_aic(
model,
include = NULL,
exclude = NULL,
progress = FALSE,
details = FALSE,
...
)
## S3 method for class 'ols_step_backward_aic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
Arguments
model |
An object of class |
... |
Other arguments. |
include |
Character or numeric vector; variables to be included in selection process. |
exclude |
Character or numeric vector; variables to be excluded from selection process. |
progress |
Logical; if |
details |
Logical; if |
x |
An object of class |
print_plot |
logical; if |
digits |
Number of decimal places to display. |
Value
List containing the following components:
model |
final model; an object of class |
metrics |
selection metrics |
others |
list; info used for plotting and printing |
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See Also
Other backward selection procedures:
ols_step_backward_adj_r2()
,
ols_step_backward_p()
,
ols_step_backward_r2()
,
ols_step_backward_sbc()
,
ols_step_backward_sbic()
Examples
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_aic(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_aic(model)
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_aic(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_aic(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_aic(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_aic(model, exclude = c(8, 1))