ols_step_all_possible {olsrr} | R Documentation |
All possible regression
Description
Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.
Usage
ols_step_all_possible(model, ...)
## Default S3 method:
ols_step_all_possible(model, max_order = NULL, ...)
## S3 method for class 'ols_step_all_possible'
plot(x, model = NA, print_plot = TRUE, ...)
Arguments
model |
An object of class |
... |
Other arguments. |
max_order |
Maximum subset order. |
x |
An object of class |
print_plot |
logical; if |
Value
ols_step_all_possible
returns an object of class "ols_step_all_possible"
.
An object of class "ols_step_all_possible"
is a data frame containing the
following components:
mindex |
model index |
n |
number of predictors |
predictors |
predictors in the model |
rsquare |
rsquare of the model |
adjr |
adjusted rsquare of the model |
rmse |
root mean squared error of the model |
predrsq |
predicted rsquare of the model |
cp |
mallow's Cp |
aic |
akaike information criteria |
sbic |
sawa bayesian information criteria |
sbc |
schwarz bayes information criteria |
msep |
estimated MSE of prediction, assuming multivariate normality |
fpe |
final prediction error |
apc |
amemiya prediction criteria |
hsp |
hocking's Sp |
References
Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall
Examples
model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
k
# plot
plot(k)
# maximum subset
model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
ols_step_all_possible(model, max_order = 3)