PriorRangeOrderKmeansCpp {offlineChange} | R Documentation |
Detect Location of Change Points of Independent Data with Prior Ranges using Rcpp
Description
Detect the location of change points based on minimizing within segment quadratic loss with restriction of prior ranges that contaion change points.
Usage
PriorRangeOrderKmeansCpp(x, prior_range_x, num_init = 10)
Arguments
x |
The data to find change points with dimension N x D, must be matrix |
prior_range_x |
The prior ranges that contain change points. |
num_init |
The number of repetition times, in order to avoid local minimal. Default is 10. Must be integer. |
Details
The K change points form K+1 segments (1 2 ... change_point(1)) ... (change_point(K) ... N).
Value
num_change_point |
optimal number of change points. |
change_point |
location of change points. |
References
J. Ding, Y. Xiang, L. Shen, and V. Tarokh, Multiple Change Point Analysis: Fast Implementation and Strong Consistency. IEEE Transactions on Signal Processing, vol. 65, no. 17, pp. 4495-4510, 2017.
Examples
a<-matrix(rnorm(40,mean=-1,sd=1),nrow=20,ncol=2)
b<-matrix(rnorm(120,mean=0,sd=1),nrow=60,ncol=2)
c<-matrix(rnorm(40,mean=1,sd=1),nrow=20,ncol=2)
x<-rbind(a,b,c)
l1<-c(15,25)
l2<-c(75,100)
prior_range_x<-list(l1,l2)
PriorRangeOrderKmeansCpp(x,prior_range_x=list(l1,l2))
[Package offlineChange version 0.0.4 Index]