PriorRangeOrderKmeans {offlineChange} | R Documentation |
Detect Number and Location of Change Points of Independent Data with Prior Ranges
Description
Detect the number and locations of change points based on minimizing within segment quadratic loss with restriction of prior ranges that contaion change points.
Usage
PriorRangeOrderKmeans(x, prior_range_x, num_init = 10)
Arguments
x |
The data to find change points. |
prior_range_x |
The prior ranges that contain change points. |
num_init |
The number of repetition times, in order to avoid local minimal. Default is 10. Must be integer. |
Details
The K prior ranges contain K change points, each prior range contaions one change point.
Value
num_change_point |
optimal number of change points. |
change_point |
location of change points. |
References
J. Ding, Y. Xiang, L. Shen, and V. Tarokh, Multiple Change Point Analysis: Fast Implementation and Strong Consistency. IEEE Transactions on Signal Processing, vol. 65, no. 17, pp. 4495-4510, 2017.
Examples
a<-matrix(rnorm(40,mean=-1,sd=1),nrow=20,ncol=2)
b<-matrix(rnorm(120,mean=0,sd=1),nrow=60,ncol=2)
c<-matrix(rnorm(40,mean=1,sd=1),nrow=20,ncol=2)
x<-rbind(a,b,c)
l1<-c(15,25)
l2<-c(75,100)
prior_range_x<-list(l1,l2)
PriorRangeOrderKmeans(x,prior_range_x=list(l1,l2))
[Package offlineChange version 0.0.4 Index]