oem.xtx {oem} | R Documentation |
Orthogonalizing EM with precomputed XtX
Description
Orthogonalizing EM with precomputed XtX
Usage
oem.xtx(
xtx,
xty,
family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net",
"sparse.grp.lasso"),
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 3,
tau = 0.5,
groups = numeric(0),
scale.factor = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001
)
Arguments
xtx |
input matrix equal to |
xty |
numeric vector of length |
family |
|
penalty |
Specification of penalty type. Choices include:
Careful consideration is required for the group lasso, group MCP, and group SCAD penalties. Groups as specified by the |
lambda |
A user supplied lambda sequence. By default, the program computes
its own lambda sequence based on |
nlambda |
The number of lambda values - default is 100. |
lambda.min.ratio |
Smallest value for lambda, as a fraction of |
alpha |
mixing value for |
gamma |
tuning parameter for SCAD and MCP penalties. must be >= 1 |
tau |
mixing value for |
groups |
A vector of describing the grouping of the coefficients. See the example below. All unpenalized variables should be put in group 0 |
scale.factor |
of length |
penalty.factor |
Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables. |
group.weights |
penalty factors applied to each group for the group lasso. Similar to |
maxit |
integer. Maximum number of OEM iterations |
tol |
convergence tolerance for OEM iterations |
irls.maxit |
integer. Maximum number of IRLS iterations |
irls.tol |
convergence tolerance for IRLS iterations. Only used if |
Value
An object with S3 class "oem"
References
Huling. J.D. and Chien, P. (2022), Fast Penalized Regression and Cross Validation for Tall Data with the oem Package. Journal of Statistical Software 104(6), 1-24. doi:10.18637/jss.v104.i06
Examples
set.seed(123)
n.obs <- 1e4
n.vars <- 100
true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))
x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
fit <- oem(x = x, y = y,
penalty = c("lasso", "elastic.net",
"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),
standardize = FALSE, intercept = FALSE,
groups = rep(1:20, each = 5))
xtx <- crossprod(x) / n.obs
xty <- crossprod(x, y) / n.obs
fit.xtx <- oem.xtx(xtx = xtx, xty = xty,
penalty = c("lasso", "elastic.net",
"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),
groups = rep(1:20, each = 5))
max(abs(fit$beta[[1]][-1,] - fit.xtx$beta[[1]]))
max(abs(fit$beta[[2]][-1,] - fit.xtx$beta[[2]]))
layout(matrix(1:2, ncol = 2))
plot(fit.xtx)
plot(fit.xtx, which.model = 2)