predict.oml {ocf} | R Documentation |
Prediction Method for oml Objects
Description
Prediction method for class oml
.
Usage
## S3 method for class 'oml'
predict(object, data = NULL, ...)
Arguments
object |
An |
data |
Data set of class |
... |
Further arguments passed to or from other methods. |
Details
If object$learner == "l1"
, then model.matrix
is used to handle non-numeric covariates. If we also
have object$scaling == TRUE
, then data
is scaled to have zero mean and unit variance.
Value
Matrix of predictions.
Author(s)
Riccardo Di Francesco
See Also
Examples
## Load data from orf package.
set.seed(1986)
library(orf)
data(odata)
odata <- odata[1:100, ] # Subset to reduce elapsed time.
y <- as.numeric(odata[, 1])
X <- as.matrix(odata[, -1])
## Training-test split.
train_idx <- sample(seq_len(length(y)), floor(length(y) * 0.5))
y_tr <- y[train_idx]
X_tr <- X[train_idx, ]
y_test <- y[-train_idx]
X_test <- X[-train_idx, ]
## Fit ordered machine learning on training sample using two different learners.
ordered_forest <- ordered_ml(y_tr, X_tr, learner = "forest")
ordered_l1 <- ordered_ml(y_tr, X_tr, learner = "l1")
## Predict out of sample.
predictions_forest <- predict(ordered_forest, X_test)
predictions_l1 <- predict(ordered_l1, X_test)
## Compare predictions.
cbind(head(predictions_forest), head(predictions_l1))
[Package ocf version 1.0.0 Index]