doccgap {occupancy} | R Documentation |
The Occupancy-Gap Distribution
Description
Density, distribution function, quantile function and random generation for the Occupancy-Gap Distribution with size and scale parameters (see note).
Usage
doccgap(
x,
size,
space = NULL,
occupancy = size,
prob = NULL,
scale = NULL,
log = FALSE
)
doccgap.all(
size,
space = NULL,
max.occupancy = size,
prob = NULL,
scale = NULL,
log = FALSE
)
poccgap(
x,
size,
space = NULL,
occupancy = size,
prob = NULL,
scale = NULL,
log.p = FALSE,
lower.tail = TRUE
)
qoccgap(
p,
size,
space = NULL,
occupancy = size,
prob = NULL,
scale = NULL,
log.p = FALSE,
lower.tail = TRUE
)
roccgap(n, size, space = NULL, occupancy = size, prob = NULL, scale = NULL)
Arguments
x |
vector of quantiles. |
size |
The size parameter for the occupancy-gap distribution (number of balls) |
space |
The space parameter for the occupancy-gap distribution (number of bins) |
occupancy |
The occupancy parameter for the occupancy-gap distribution (number of occupied bins) |
prob |
The probability parameter for the occupancy-gap distribution (probability of ball occupying its bin) |
scale |
The scale parameter for the occupancy-gap distribution |
log |
logical; if TRUE, probabilities p are given as log(p). |
max.occupancy |
The maximum occupancy parameter for the occupancy-gap distribution (number of occupied bins) |
log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
Details
docc.all
returns the entire PMF.
This function computes probabilities or log-probabilities from the mass function of the occupancy-gap distribution. The computation method uses a recursive algorithm from the following paper:
Value
If all inputs are correctly specified (i.e., parameters are in allowable range) then the output will be a matrix of probabilities/log-probabilities
References
O'Neill, B. (forthcoming) An examination of the occupancy-gap distribution.
Note
The distribution is parameterised by a scale
parameter, but in applied problems in the context
of the extended occupancy problem this parameter is a function of space
and prob
parameters.
The function allows either parameterisation (i.e., the user can either specify the scale
paramater or
both the space
and prob
parameters).
Examples
x <- roccgap(10, 20, 2, 2, .5)
p <- poccgap(x, 20, 2, 2, .5)
stopifnot(x == qoccgap(p, 20, 2, 2, .5))
doccgap.all(20, 2, 2, .5)