oplsda {o2plsda}R Documentation

Orthogonal partial least squares discriminant analysis

Description

Computes orthogonal scores partial least squares regressions with the NIPALS algorithm. It return a comprehensive set of pls outputs (e.g. scores and vip).

Usage

oplsda(X, Y, nc, scale = FALSE, center = TRUE, maxiter = 100, tol = 1e-05)

Arguments

X

a O2pls object or a matrix of predictor variables.

Y

a single vector indicate the group

nc

the number of pls components (the one joint components + number of orthogonal components ).

scale

logical indicating whether X must be scaled (suggest TRUE).

center

boolean values determining if data should be centered or not

maxiter

maximum number of iterations.

tol

limit for convergence of the algorithm in the nipals algorithm.

Value

a list containing the following elements:

Author(s)

Kai Guo

Examples

X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
yy <- rep(c(0,1),5)
fit0 <- oplsda(fit,yy,2)

[Package o2plsda version 0.0.25 Index]