zyx2R {nvctr}R Documentation

Create a rotation matrix from 3 angles about new axes in the zyx order.

Description

The rotation matrix R_AB is created based on 3 angles z, y and x about new axes (intrinsic) in the order z-y-x. The angles (called Euler angles or Tait–Bryan angles) are defined by the following procedure of successive rotations:

  1. Given two arbitrary coordinate frames A and B, consider a temporary frame T that initially coincides with A. In order to make T align with B, we first rotate T an angle z about its z-axis (common axis for both A and T).

  2. Secondly, T is rotated an angle y about the NEW y-axis of T.

  3. Finally, T is rotated an angle x about its NEWEST x-axis. The final orientation of T now coincides with the orientation of B.

The signs of the angles are given by the directions of the axes and the right hand rule. Note that if A is a north-east-down frame and B is a body frame, we have that z=yaw, y=pitch and x=roll.

Usage

zyx2R(z, y, x)

Arguments

z

Angle of rotation about new z axis

y

Angle of rotation about new y axis

x

Angle of rotation about new x axis

Value

3x3 rotation matrix R_AB (direction cosine matrix) such that the relation between a vector v decomposed in A and B is given by: v_A = R_AB * v_B

References

Kenneth Gade A Nonsingular Horizontal Position Representation. The Journal of Navigation, Volume 63, Issue 03, pp 395-417, July 2010.

See Also

R2zyx, xyz2R and R2xyz.

Examples

zyx2R(rad(30), rad(20), rad(10))


[Package nvctr version 0.1.4 Index]