selectnet {nutriNetwork} | R Documentation |
Model selection for optimal graph estimation
Description
Estimate the optimal graph based on different information criteria .
Usage
selectnet(nutriNetwork.obj, opt.index= NULL, criteria= NULL, ebic.gamma=0.5,
ncores= NULL, verbose= TRUE)
Arguments
nutriNetwork.obj |
An object with S3 class "nutriNetwork" |
opt.index |
The program internally determines an optimal graph using |
criteria |
Model selection criteria. "ebic" and "aic" are available. BIC model selection can be calculated by fixing |
ebic.gamma |
The tuning parameter for ebic. The |
ncores |
The number of cores to use for the calculations. Using |
verbose |
If |
Value
An obj with S3 class "selectnet" is returned:
opt.adj |
The optimal graph selected from the graph path |
opt.theta |
The optimal precision matrix from the graph path |
opt.sigma |
The optimal covariance matrix from the graph path |
ebic.scores |
Extended BIC scores for regularization parameter selection at the EM convergence. Applicable if |
opt.index |
The index of optimal regularization parameter. |
opt.rho |
The selected regularization parameter. |
par.cor |
A partial correlation matrix. |
and anything else that is included in the input nutriNetwork.obj
.
Author(s)
Pariya Behrouzi
Maintainer: Pariya Behrouzi pariya.behrouzi@gmail.com
References
1. Behrouzi, P., and Wit, E. C. (2019). Detecting epistatic selection with partially observed genotype data by using copula graphical models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(1), 141-160.
2. Behrouzi, P., and Wit, E. C. (2017c). netgwas: An R Package for Network-Based Genome-Wide Association Studies. arXiv preprint, arXiv:1710.01236.
3. Ibrahim, Joseph G., Hongtu Zhu, and Niansheng Tang. (2012). Model selection criteria for missing-data problems using the EM algorithm. Journal of the American Statistical Association.
4. D. Witten and J. Friedman. (2011). New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, to appear.
5. J. Friedman, T. Hastie and R. Tibshirani. (2007). Sparse inverse covariance estimation with the lasso, Biostatistics.
6. Foygel, R. and M. Drton. (2010). Extended bayesian information criteria for Gaussian graphical models. In Advances in Neural Information Processing Systems, pp. 604-612.
Examples
######## toy example
data(vfit)
test_dat <- vfit[1:10, c("sex", "ani.pro", "veg.pro", "B6",
"B12", "B9", "SPPB.total", "HandGrip" )]
out_test <- nutriNetwork(test_dat, method = "gibbs")
sel_test <- selectnet(out_test)
########
out <- nutriNetwork(vfit, method = "gibbs")
sel <- selectnet(out)
cl <- c(rep("gray70", 7), rep("green3",17), rep("red3",5))
plot(sel, vis= "parcor.network", sign.edg = TRUE,
vertex.color = cl, curve = TRUE, layout.tree= TRUE,
root.node= c(26, 29), pos.legend= "bottomleft",
cex.legend=1)
#diffeent visualization
plot(sel, vis= "parcor.network", sign.edg = TRUE, layout = NULL,
vertex.color = cl, curve = TRUE, pos.legend= "topleft",
cex.legend=1 )