Bernoulli numbers {numbers} | R Documentation |
Bernoulli Numbers
Description
Generate the Bernoulli numbers.
Usage
bernoulli_numbers(n, big = FALSE)
Arguments
n |
integer; starting from 0. |
big |
logical; shall double or GMP big numbers be returned? |
Details
Generate the n+1
Bernoulli numbers B_0,B_1, ...,B_n
,
i.e. from 0 to n
. We assume B1 = +1/2
.
With big=FALSE
double integers up to 2^53-1
will be used,
with big=TRUE
GMP big rationals (through the 'gmp' package).
B_25
is the highest such number that can be expressed as an
integer in double float.
Value
Returns a matrix with two columns, the first the numerator, the second the denominator of the Bernoulli number.
References
M. Kaneko. The Akiyama-Tanigawa algorithm for Bernoulli numbers. Journal of Integer Sequences, Vol. 3, 2000.
D. Harvey. A multimodular algorithm for computing Bernoulli numbers. Mathematics of Computation, Vol. 79(272), pp. 2361-2370, Oct. 2010. arXiv 0807.1347v2, Oct. 2018.
See Also
Examples
bernoulli_numbers(3); bernoulli_numbers(3, big=TRUE)
## Big Integer ('bigz') 4 x 2 matrix:
## [,1] [,2] [,1] [,2]
## [1,] 1 1 [1,] 1 1
## [1,] 1 2 [2,] 1 2
## [2,] 1 6 [3,] 1 6
## [3,] 0 1 [4,] 0 1
## Not run:
bernoulli_numbers(24)[25,]
## [1] -236364091 2730
bernoulli_numbers(30, big=TRUE)[31,]
## Big Integer ('bigz') 1 x 2 matrix:
## [,1] [,2]
## [1,] 8615841276005 14322
## End(Not run)