| mcMAM {numOSL} | R Documentation |
Optimization of the minimum (maximum) age model (using a Markov chain Monte Carlo method)
Description
Sampling from the joint-likelihood function of the minimum (maximum) age model using a Markov chain Monte Carlo (MCMC) method.
Usage
mcMAM(EDdata, ncomp = -1, addsigma = 0, iflog = TRUE,
nsim = 50000, inis = list(), control.args = list())
Arguments
EDdata |
matrix(required): a two-column matrix (i.e., equivalent dose values and |
ncomp |
integer(with default): number of components, |
addsigma |
numeric(with default): additional uncertainty, i.e., the sigmab value |
iflog |
logical(with default): transform equivalent dose values to log-scale or not |
nsim |
integer(with default): deseried number of iterations |
inis |
list(with default): initial state of parameters. |
control.args |
list(with default): arguments used by the Slice Sampling algorithm, see function mcFMM for details |
Value
Return an invisible list of S3 class object "mcAgeModels". See mcFMM for details.
References
Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.
Neal RM, 2003. "Slice sampling" (with discussion). Annals of Statistics, 31(3): 705-767. Software is freely available at https://glizen.com/radfordneal/slice.software.html.
Peng J, Dong ZB, Han FQ, 2016. Application of slice sampling method for optimizing OSL age models used for equivalent dose determination. Progress in Geography, 35(1): 78-88. (In Chinese).
See Also
mcFMM; reportMC; RadialPlotter; EDdata; optimSAM; sensSAM
Examples
# Not run.
# data(EDdata)
# Construct a MCMC chain for MAM3.
# obj<-mcMAM(EDdata$al3,ncomp=-1,addsigma=0.1,nsim=5000)
# reportMC(obj,burn=1e3,thin=2)
#
# The convergence of the simulations may be diagnosed with
# the Gelman and Rubin's convergence diagnostic.
# library(coda) # Only if package "coda" has been installed.
# args<-list(nstart=50)
# inis1<-list(p=0.01,gamma=26,mu=104,sigma=0.01)
# inis2<-list(p=0.99,gamma=100,mu=104,sigma=4.99)
# obj1<-mcMAM(EDdata$al3,ncomp=-2,nsim=3000,inis=inis1,control.args=args)
# obj2<-mcMAM(EDdata$al3,ncomp=-2,nsim=3000,inis=inis2,control.args=args)
# chain1<-mcmc(obj1$chains)
# chain2<-mcmc(obj2$chains)
# chains<-mcmc.list(chain1,chain2)
# gelman.plot(chains)