Neutrosophic Negative Binomial {ntsDists} | R Documentation |
Neutrosophic Negative Binomial Distribution
Description
Density, distribution function, quantile function and random
generation for the neutrosophic Negative Binomial distribution with
parameters size
= r_N
and prob
= p_N
.
Usage
dnsNegBinom(x, size, prob)
pnsNegBinom(q, size, prob, lower.tail = TRUE)
qnsNegBinom(p, size, prob)
rnsNegBinom(n, size, prob)
Arguments
x |
a vector or matrix of observations for which the pdf needs to be computed. |
size |
number of trials (zero or more), which must be a positive interval. |
prob |
probability of success on each trial, |
q |
a vector or matrix of quantiles for which the cdf needs to be computed. |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
a vector or matrix of probabilities for which the quantile needs to be computed. |
n |
number of random values to be generated. |
Details
The neutrosophic negative binomial distribution with parameters r_N
and p_N
has the density
\left(\begin{array}{c} r_N+x-1 \\ x \end{array}\right) p_N^{r_N}\left(1-p_N\right)^{x}
for r_N \in \{1, 2, \ldots\}
and p_N \in (p_L, p_U)
which must be 0<p_N<1
and x \in \{0, 1, 2, \ldots\}
.
Value
dnsNegBinom
gives the probability mass function
pnsNegBinom
gives the distribution function
qnsNegBinom
gives the quantile function
rnsNegBinom
generates random variables from the Negative Binomial Distribution.
References
Granados, C. (2022). Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables. Hacettepe Journal of Mathematics and Statistics, 51(5), 1442-1457.
Examples
dnsNegBinom(x = 1, size = 2, prob = c(0.5, 0.6))
pnsNegBinom(q = 1, size = 2, prob = c(0.5, 0.6))
qnsNegBinom(p = c(0.25, 0.5, 0.75), size = 2, prob = c(0.5, 0.6))
rnsNegBinom(n = 10, size = 2, prob = c(0.6, 0.6))