Neutrosophic Generalized Rayleigh {ntsDists} | R Documentation |
Neutrosophic Generalized Rayleigh Distribution
Description
Density, distribution function, quantile function and random
generation for the neutrosophic generalized Rayleigh distribution with
parameters shape
= \nu_N
and scale
= \sigma_N
.
Usage
dnsGenRayleigh(x, shape, scale)
pnsGenRayleigh(q, shape, scale, lower.tail = TRUE)
qnsGenRayleigh(p, shape, scale)
rnsGenRayleigh(n, shape, scale)
Arguments
x |
a vector or matrix of observations for which the pdf needs to be computed. |
shape |
the shape parameter, which must be a positive interval. |
scale |
the scale parameter, which must be a positive interval. |
q |
a vector or matrix of quantiles for which the cdf needs to be computed. |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
a vector or matrix of probabilities for which the quantile needs to be computed. |
n |
number of random values to be generated. |
Details
The neutrosophic generalized Rayleigh distribution with parameters \nu_N
and
\sigma_N
has the density
f_N(x)=\frac{2\nu_N}{\sigma_N^2}x \exp\{-\left(\frac{x}{\sigma_N} \right)^2\}\left[1-\exp\{-\left(\frac{x}{\sigma_N} \right)^2\}\right]^{\nu_N-1}
for x > 0
, \nu_N \in (\nu_L, \nu_U)
, the shape
parameter which must be a positive interval and
\sigma_N \in (\sigma_L, \sigma_U)
, the scale parameter which
must be a positive interval.
Value
dnsGenRayleigh
gives the density function
pnsGenRayleigh
gives the distribution function
qnsGenRayleigh
gives the quantile function
rnsGenRayleigh
generates random variables from the Neutrosophic Generalized Rayleigh Distribution.
References
Norouzirad, M., Rao, G. S., & Mazarei, D. (2023). Neutrosophic Generalized Rayleigh Distribution with Application. Neutrosophic Sets and Systems, 58(1), 250-262.
Examples
data(remission)
dnsGenRayleigh(x = remission,shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
pnsGenRayleigh(q = 20, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Calculate quantiles
qnsGenRayleigh(p = c(0.25, 0.5, 0.75), shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Simulate 10 values
rnsGenRayleigh(n = 10, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))