Neutrosophic Generalized Exponential {ntsDists} | R Documentation |
Neutrosophic Generalized Exponential Distribution
Description
Density, distribution function, quantile function and random
generation for the neutrosophic generalized exponential
distribution with shape parameter \delta_N
and scale parameter
\nu_N
.
Usage
dnsGenExp(x, nu, delta)
pnsGenExp(q, nu, delta, lower.tail = TRUE)
qnsGenExp(p, nu, delta)
rnsGenExp(n, nu, delta)
Arguments
x |
a vector or matrix of observations for which the pdf needs to be computed. |
nu |
the scale parameter, which must be a positive interval. |
delta |
the shape parameter, which must be a positive interval. |
q |
a vector or matrix of quantiles for which the cdf needs to be computed. |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
a vector or matrix of probabilities for which the quantile needs to be computed. |
n |
number of random values to be generated. |
Details
The neutrosophic generalized exponential distribution with parameters
\delta_N
and \nu_N
has density
f_N(x)=\frac{\delta_N}{\nu_N}\left(1-\exp \left\{-\frac{x_N}{\nu_N}\right\}\right)^{\delta_N-1} \exp\left\{-\frac{x_N}{\nu_N}\right\}
for \delta_N \in (\delta_L, \delta_U)
, the shape parameter
which must be a positive interval, and \nu_N \in (\nu_L, \nu_U)
, the
scale parameter which must also be a positive interval, and x \ge 0
.
Value
dnsGenExp
gives the density function
pnsGenExp
gives the distribution function
qnsGenExp
gives the quantile function
rnsGenExp
generates random variables from the neutrosophic generalized
exponential distribution.
References
Rao, G. S., Norouzirad, M., and Mazarei . D. (2023). Neutrosophic Generalized Exponential Distribution with Application. Neutrosophic Sets and Systems, 55, 471-485.
Examples
data(remission)
dnsGenExp(x = remission, nu = c(7.9506, 8.0568), delta = c(1.2390, 1.2397))
pnsGenExp(q = 20, nu = c(7.9506, 8.0568), delta = c(1.2390, 1.2397))
# Calcluate quantiles
qnsGenExp(c(0.25, 0.5, 0.75), nu = c(7.9506, 8.0568), delta = c(1.2390, 1.2397))
# Simulate 10 values
rnsGenExp(n = 10, nu = c(7.9506, 8.0568), delta = c(1.2390, 1.2397))