| Neutrosophic Gamma {ntsDists} | R Documentation |
Neutrosophic Gamma Distribution
Description
Density, distribution function, quantile function and random generation for
the neutrosophic gamma distribution with parameter shape = \alpha_N
and scale=\lambda_N.
Usage
dnsGamma(x, shape, scale)
pnsGamma(q, shape, scale, lower.tail = TRUE)
qnsGamma(p, shape, scale)
rnsGamma(n, shape, scale)
Arguments
x |
a vector or matrix of observations for which the pdf needs to be computed. |
shape |
the shape parameter, which must be a positive interval. |
scale |
the scale parameter, which must be a positive interval. |
q |
a vector or matrix of quantiles for which the cdf needs to be computed. |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
a vector or matrix of probabilities for which the quantile needs to be computed. |
n |
number of random values to be generated. |
Details
The neutrosophic gamma distribution with parameters \alpha_N and
\lambda_N has density
f_N(x)=\frac{1}{\Gamma(\alpha_N) \lambda_N^{\alpha_N}} x^{\alpha_N-1} \exp\{-\left(x / \lambda_N\right)\}
for x \ge 0, \alpha_N \in (\alpha_L, \alpha_U), the shape
parameter which must be a positive interval and
\lambda_N \in (\lambda_L, \lambda_U), the scale parameter which
must be a positive interval. Here, \Gamma(\cdot) is gamma
function implemented by gamma.
Value
dnsGamma gives the density function
pnsGamma gives the distribution function
qnsGamma gives the quantile function
rnsGamma generates random variables from the neutrosophic gamma distribution.
References
Khan, Z., Al-Bossly, A., Almazah, M. M. A., and Alduais, F. S. (2021). On statistical development of neutrosophic gamma distribution with applications to complex data analysis, Complexity, 2021, Article ID 3701236.
Examples
data(remission)
dnsGamma(x = remission, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
pnsGamma(q = 20, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Calculate quantiles
qnsGamma(p = c(0.25, 0.5, 0.75), shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Simulate 10 numbers
rnsGamma(n = 10, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))