Neutrosophic Gamma {ntsDists} | R Documentation |
Neutrosophic Gamma Distribution
Description
Density, distribution function, quantile function and random generation for
the neutrosophic gamma distribution with parameter shape
= \alpha_N
and scale
=\lambda_N
.
Usage
dnsGamma(x, shape, scale)
pnsGamma(q, shape, scale, lower.tail = TRUE)
qnsGamma(p, shape, scale)
rnsGamma(n, shape, scale)
Arguments
x |
a vector or matrix of observations for which the pdf needs to be computed. |
shape |
the shape parameter, which must be a positive interval. |
scale |
the scale parameter, which must be a positive interval. |
q |
a vector or matrix of quantiles for which the cdf needs to be computed. |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
a vector or matrix of probabilities for which the quantile needs to be computed. |
n |
number of random values to be generated. |
Details
The neutrosophic gamma distribution with parameters \alpha_N
and
\lambda_N
has density
f_N(x)=\frac{1}{\Gamma(\alpha_N) \lambda_N^{\alpha_N}} x^{\alpha_N-1} \exp\{-\left(x / \lambda_N\right)\}
for x \ge 0
, \alpha_N \in (\alpha_L, \alpha_U)
, the shape
parameter which must be a positive interval and
\lambda_N \in (\lambda_L, \lambda_U)
, the scale parameter which
must be a positive interval. Here, \Gamma(\cdot)
is gamma
function implemented by gamma
.
Value
dnsGamma
gives the density function
pnsGamma
gives the distribution function
qnsGamma
gives the quantile function
rnsGamma
generates random variables from the neutrosophic gamma distribution.
References
Khan, Z., Al-Bossly, A., Almazah, M. M. A., and Alduais, F. S. (2021). On statistical development of neutrosophic gamma distribution with applications to complex data analysis, Complexity, 2021, Article ID 3701236.
Examples
data(remission)
dnsGamma(x = remission, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
pnsGamma(q = 20, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Calculate quantiles
qnsGamma(p = c(0.25, 0.5, 0.75), shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))
# Simulate 10 numbers
rnsGamma(n = 10, shape = c(1.1884, 1.1896), scale = c(7.6658, 7.7796))