boundedSBXover {nsga2R} | R Documentation |
Bounded Simulated Binary Crossover Operator
Description
The simulated binary crossover operator is a real-parameter genetic operator. It simulates the working principal of the single-point crossover operator on binary strings.
Usage
boundedSBXover(parent_chromosome, lowerBounds, upperBounds, cprob, mu)
Arguments
parent_chromosome |
Mating pool with decision variables |
lowerBounds |
Lower bounds of each decision variable |
upperBounds |
Upper bounds of each decision variable |
cprob |
Crossover probability |
mu |
Crossover distribution index, it can be any nonnegative real number |
Value
Return the offspring population with decision variables
Author(s)
Ching-Shih (Vince) Tsou cstsou@mail.ntcb.edu.tw
References
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), " A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
Examples
set.seed(1234)
lowerBounds <- rep(0,30)
upperBounds <- rep(1,30)
cprob <- 0.7
XoverDistIdx <- 20
matingPool <- matrix(runif(1200, 0, 1), nrow=40, ncol=30)
childAfterX <- boundedSBXover(matingPool,lowerBounds,upperBounds,cprob,XoverDistIdx)
childAfterX
[Package nsga2R version 1.1 Index]