nse {nse} | R Documentation |
nse: Computation of numerical standard errors in R
Description
nse
(Ardia and Bluteau, 2017) is an R package for computing the numerical standard error (NSE), an estimate
of the standard deviation of a simulation result, if the simulation experiment were to be repeated
many times. The package provides a set of wrappers around several R packages, which give access to
more than thirty NSE estimators, including batch means
estimators (Geyer, 1992, Section 3.2), initial sequence estimators Geyer (1992, Equation 3.3),
spectrum at zero estimators (Heidelberger and Welch, 1981), heteroskedasticity
and autocorrelation consistent (HAC) kernel estimators (Newey and West, 1987; Andrews, 1991; Andrews and
Monahan, 1992; Newey and West, 1994; Hirukawa, 2010), and bootstrap estimators Politis and
Romano (1992, 1994); Politis and White (2004). The full set of estimators is described in
Ardia et al. (2018).
Functions
-
nse.geyer
: Geyer NSE estimator. -
nse.spec0
: Spectral density at zero NSE estimator. -
nse.nw
: Newey-West NSE estimator. -
nse.andrews
: Andrews NSE estimator. -
nse.hiruk
: Hirukawa NSE estimator. -
nse.boot
: Bootstrap NSE estimator.
Note
Functions rely on the packages coda
, mcmc
,mcmcse
, np
, and sandwich
.
Please cite the package in publications. Use citation("nse")
.
Author(s)
David Ardia and Keven Bluteau
References
Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3), 817-858.
Andrews, D.W.K, Monahan, J.C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica 60(4), 953-966.
Ardia, D., Bluteau, K., Hoogerheide, L. (2018). Methods for computing numerical standard errors: Review and application to Value-at-Risk estimation. Journal of Time Series Econometrics 10(2), 1-9. doi:10.1515/jtse-2017-0011 doi:10.2139/ssrn.2741587
Ardia, D., Bluteau, K. (2017). nse: Computation of numerical standard errors in R. Journal of Open Source Software 10(2). doi:10.21105/joss.00172
Geyer, C.J. (1992). Practical Markov chain Monte Carlo. Statistical Science 7(4), 473-483.
Heidelberger, P., Welch, Peter D. (1981). A spectral method for confidence interval generation and run length control in simulations. Communications of the ACM 24(4), 233-245.
Hirukawa, M. (2010). A two-stage plug-in bandwidth selection and its implementation for covariance estimation. Econometric Theory 26(3), 710-743.
Newey, W.K., West, K.D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelationconsistent covariance matrix. Econometrica 55(3), 703-708.
Newey, W.K., West, K.D. (1994) . Automatic lag selection in covariance matrix estimation. Review of Economic Studies 61(4), 631-653.
Politis, D.N., Romano, and J.P. (1992). A circular block-resampling procedure for stationary data. In Exploring the limits of bootstrap, John Wiley & Sons, 263-270.
Politis, D.N., Romano, and J.P. (1994). The stationary bootstrap. Journal of the American Statistical Association 89(428), 1303-1313.
Politis, D.N., White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric Reviews 23(1), 53-70.
See Also
Useful links:
Report bugs at https://github.com/keblu/nse/issues