mle.arfima {nsarfima} | R Documentation |
Pseudo-Maximum Likelihood Estimation of ARFIMA Model
Description
Fits an ARFIMA(p,d,q) model to a time series using a pseudo-maximum likelihood estimator. For details see Beran (1995).
Usage
mle.arfima(
y,
p = 1,
q = 0,
d.range = c(0, 1),
start,
incl.mean = TRUE,
verbose = FALSE,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
control = list()
)
Arguments
y |
Numeric vector of the time series. |
p |
Autoregressive order. |
q |
Moving average order. |
d.range |
Range of allowable values for fractional differencing parameter. Smallest value must be greater than -1. |
start |
Named vector of length 1 + |
incl.mean |
Whether or not to include a mean term in the model. The default value of |
verbose |
Whether to print summary of fit. |
method |
Method for |
control |
List of additional arguments for |
Value
A list containing:
pars | A numeric vector of parameter estimates. |
std.errs | A numeric vector of standard errors on parameters. |
cov.mat | Parameter covariance matrix (excluding mean). |
fit.obj | optim fit object. |
p.val | Ljung-Box p-value for fit. |
residuals | Fit residuals. |
References
Beran, J. (1995). Maximum Likelihood Estimation of the Differencing Parameter for Short and Long Memory Autoregressive Integrated Moving Average Models. Journal of the Royal Statistical Society. Series B (Methodological), 57, No. 4, 659-672. doi: 10.1111/j.2517-6161.1995.tb02054.x
See Also
mde.arfima
for minimum distance estimation.
Examples
set.seed(1)
x <- arfima.sim(1000, d=0.6, ar=c(-0.4))
fit <- mle.arfima(x, p=1, incl.mean=FALSE, verbose=TRUE)
## Fit Summary
## --------------------
## Ljung-Box p-val: 0.263
## sig2 d ar.1
## est 1.09351 0.53933 -0.37582
## err 0.05343 0.04442 0.05538
##
## Correlation Matrix for ARFIMA Parameters
## sig2 d ar.1
## sig2 1.0000 -0.3349 0.4027
## d -0.3349 1.0000 -0.8318
## ar.1 0.4027 -0.8318 1.0000