mde.arfima {nsarfima} | R Documentation |
Minimum Distance Estimation of ARFIMA Model
Description
Fits an ARFIMA(p,d,q) model to a time series using a minimum distance estimator. For details see Mayoral (2007).
Usage
mde.arfima(
y,
p = 1,
q = 0,
d.range = c(0, 1),
start,
lag.max = floor(sqrt(length(y))),
incl.mean = TRUE,
verbose = FALSE,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
control = list()
)
Arguments
y |
Numeric vector of the time series. |
p |
Autoregressive order. |
q |
Moving average order. |
d.range |
Range of allowable values for fractional differencing parameter. Smallest value must be greater than -1. |
start |
Named vector of length 1 + |
lag.max |
Maximum lag to use when calculating the residual autocorrelations. For details see Mayoral (2007). |
incl.mean |
Whether or not to include a mean term in the model. The default value of |
verbose |
Whether to print summary of fit. |
method |
Method for |
control |
List of additional arguments for |
Value
A list containing:
pars | A numeric vector of parameter estimates. |
std.errs | A numeric vector of standard errors on parameters. |
cov.mat | Parameter covariance matrix (excluding mean). |
fit.obj | optim fit object. |
p.val | Ljung-Box p-value for fit. |
residuals | Fit residuals. |
Note
This method makes no assumptions on the distribution of the innovation series, and the innovation variance does not factor into the covariance matrix of parameter estimates. For this reason, it is not included in the results, but can be estimated from the residuals—see Mayoral (2007).
References
Mayoral, L. (2007). Minimum distance estimation of stationary and non-stationary ARFIMA processes. The Econometrics Journal, 10, 124-148. doi: 10.1111/j.1368-423X.2007.00202.x
See Also
mle.arfima
for psuedo-maximum likelihood estimation.
Examples
set.seed(1)
x <- arfima.sim(1000, d=0.6, ar=c(-0.4))
fit <- mde.arfima(x, p=1, incl.mean=FALSE, verbose=TRUE)
## Fit Summary
## --------------------
## Ljung-Box p-val: 0.276
## d ar.1
## est 0.55031 -0.39261
## err 0.03145 0.03673
##
## Correlation Matrix for ARFIMA Parameters
## d ar.1
## d 1.0000 0.6108
## ar.1 0.6108 1.0000