interleukin6 {nsROC} | R Documentation |
Interleukin 6 (IL6) data
Description
This dataset includes the true-positives (TP), false-positives (FP), true-negatives (TN) and false-negatives (FN) reported by 9 different papers which study the use of the Interleukin 6 (IL6) as a marker for the early detection of neonatal sepsis.
Usage
interleukin6
Format
A data frame with 19 observations of the following 5 variables.
Author
a vector assigning different numbers to each paper
TP
vector of true positives
FP
vector of false positives
FN
vector of false negatives
TN
vector of true negatives
Details
In those papers providing more than one pair of Sensitivity-Specificity all of them are collected.
References
Martinez-Camblor P., 2017, Fully non-parametric receiver operating characteristic curve estimation for random-effects meta-analysis, Statistical Methods in Medical Research, 26(1), 5-20.
Examples
# Load the dataset
data(interleukin6)
# Plot pairs (FPR, TPR) for each Author
attach(interleukin6)
TPR <- TP/(TP+FN)
FPR <- FP/(FP+TN)
plot(FPR, TPR, xlim=c(0,1), ylim=c(0,1), lwd=10, pch=1, col='gray', xlab="False-Positive Rate",
ylab="True-Positive Rate", main=paste("ROC curve interpolation"))
S <- unique(Author)
ind <- order(Author, FPR, TPR)
ord.data <- cbind(Author[ind], FPR[ind], TPR[ind])
roc.j <- sapply(S, function(j){
lines(c(0,ord.data[Author==j,2],1), c(0,ord.data[Author==j,3],1), col='gray')})
for(i in 1:19){text(ord.data[i,2],ord.data[i,3],ord.data[i,1],cex=0.5)}
[Package nsROC version 1.1 Index]