Lmoments {nsRFA} | R Documentation |
Hosking and Wallis sample L-moments
Description
Lmoments
provides the estimate of L-moments of a sample or regional L-moments of a region.
Usage
Lmoments (x)
regionalLmoments (x,cod)
LCV (x)
LCA (x)
Lkur (x)
Arguments
x |
vector representing a data-sample (or data from many samples defined with |
cod |
array that defines the data subdivision among sites |
Details
The estimation of L-moments is based on a sample of size n
, arranged in ascending order.
Let x_{1:n} \le x_{2:n} \le \dots \le x_{n:n}
be the ordered sample.
An unbiased estimator of the probability weighted moments \beta_r
is:
b_r = n^{-1} \sum_{j=r+1}^n \frac{(j-1)(j-2)\dots(j-r)}{(n-1)(n-2)\dots(n-r)} x_{j:n}
The sample L-moments are defined by:
l_1 = b_0
l_2 = 2b_1 - b_0
l_3 = 6b_2 - 6b_1 + b_0
l_4 = 20b_3-30b_2+12b_1-b_0
and in general
l_{r+1} = \sum_{k=0}^r \frac{(-1)^{r-k}(r+k)!}{(k!)^2(r-k)!} b_k
where r=0,1,\dots,n-1
.
The sample L-moment ratios are defined by
t_r=l_r/l_2
and the sample L-CV by
t=l_2/l_1
Sample regional L-CV, L-skewness and L-kurtosis coefficients are defined as
t^R = \frac{\sum_{i=1}^k n_i t^{(i)}}{ \sum_{i=1}^k n_i}
t_3^R =\frac{ \sum_{i=1}^k n_i t_3^{(i)}}{ \sum_{i=1}^k n_i}
t_4^R =\frac{ \sum_{i=1}^k n_i t_4^{(i)}}{\sum_{i=1}^k n_i}
Value
Lmoments
gives the L-moments (l_1
, l_2
, t
, t_3
, t_4
), regionalLmoments
gives the regional weighted L-moments (l_1^R
, l_2^R
, t^R
, t_3^R
, t_4^R
), LCV
gives the coefficient of L-variation, LCA
gives the L-skewness and Lkur
gives the L-kurtosis of x
.
Note
For information on the package and the Author, and for all the references, see nsRFA
.
See Also
Examples
x <- rnorm(30,10,2)
Lmoments(x)
data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
cod <- annualflows["cod"][,]
split(x,cod)
camp <- split(x,cod)$"45"
Lmoments(camp)
sapply(split(x,cod),Lmoments)
regionalLmoments(x,cod)