GENPAR {nsRFA} | R Documentation |
Three parameter generalized Pareto distribution and L-moments
Description
GENPAR
provides the link between L-moments of a sample and the three parameter
generalized Pareto distribution.
Usage
f.genpar (x, xi, alfa, k)
F.genpar (x, xi, alfa, k)
invF.genpar (F, xi, alfa, k)
Lmom.genpar (xi, alfa, k)
par.genpar (lambda1, lambda2, tau3)
rand.genpar (numerosita, xi, alfa, k)
Arguments
x |
vector of quantiles |
xi |
vector of genpar location parameters |
alfa |
vector of genpar scale parameters |
k |
vector of genpar shape parameters |
F |
vector of probabilities |
lambda1 |
vector of sample means |
lambda2 |
vector of L-variances |
tau3 |
vector of L-CA (or L-skewness) |
numerosita |
numeric value indicating the length of the vector to be generated |
Details
See https://en.wikipedia.org/wiki/Pareto_distribution for an introduction to the Pareto distribution.
Definition
Parameters (3): \xi
(location), \alpha
(scale), k
(shape).
Range of x
: \xi < x \le \xi + \alpha / k
if k>0
;
\xi \le x < \infty
if k \le 0
.
Probability density function:
f(x) = \alpha^{-1} e^{-(1-k)y}
where y = -k^{-1}\log\{1 - k(x - \xi)/\alpha\}
if k \ne 0
,
y = (x-\xi)/\alpha
if k=0
.
Cumulative distribution function:
F(x) = 1-e^{-y}
Quantile function:
x(F) = \xi + \alpha[1-(1-F)^k]/k
if k \ne 0
,
x(F) = \xi - \alpha \log(1-F)
if k=0
.
k=0
is the exponential distribution; k=1
is the uniform distribution on the interval \xi < x \le \xi + \alpha
.
L-moments
L-moments are defined for k>-1
.
\lambda_1 = \xi + \alpha/(1+k)]
\lambda_2 = \alpha/[(1+k)(2+k)]
\tau_3 = (1-k)/(3+k)
\tau_4 = (1-k)(2-k)/[(3+k)(4+k)]
The relation between \tau_3
and \tau_4
is given by
\tau_4 = \frac{\tau_3 (1 + 5 \tau_3)}{5+\tau_3}
Parameters
If \xi
is known, k=(\lambda_1 - \xi)/\lambda_2 - 2
and \alpha=(1+k)(\lambda_1 - \xi)
;
if \xi
is unknown, k=(1 - 3 \tau_3)/(1 + \tau_3)
, \alpha=(1+k)(2+k)\lambda_2
and
\xi=\lambda_1 - (2+k)\lambda_2
.
Lmom.genpar
and par.genpar
accept input as vectors of equal length. In f.genpar
, F.genpar
, invF.genpar
and rand.genpar
parameters (xi
, alfa
, k
) must be atomic.
Value
f.genpar
gives the density f
, F.genpar
gives the distribution function F
, invF.genpar
gives
the quantile function x
, Lmom.genpar
gives the L-moments (\lambda_1
, \lambda_2
, \tau_3
, \tau_4
), par.genpar
gives the parameters (xi
, alfa
, k
), and rand.genpar
generates random deviates.
Note
For information on the package and the Author, and for all the references, see nsRFA
.
See Also
rnorm
, runif
, EXP
, GENLOGIS
, GEV
, GUMBEL
, KAPPA
, LOGNORM
, P3
; DISTPLOTS
, GOFmontecarlo
, Lmoments
.
Examples
data(hydroSIMN)
annualflows
summary(annualflows)
x <- annualflows["dato"][,]
fac <- factor(annualflows["cod"][,])
split(x,fac)
camp <- split(x,fac)$"45"
ll <- Lmoments(camp)
parameters <- par.genpar(ll[1],ll[2],ll[4])
f.genpar(1800,parameters$xi,parameters$alfa,parameters$k)
F.genpar(1800,parameters$xi,parameters$alfa,parameters$k)
invF.genpar(0.7161775,parameters$xi,parameters$alfa,parameters$k)
Lmom.genpar(parameters$xi,parameters$alfa,parameters$k)
rand.genpar(100,parameters$xi,parameters$alfa,parameters$k)
Rll <- regionalLmoments(x,fac); Rll
parameters <- par.genpar(Rll[1],Rll[2],Rll[4])
Lmom.genpar(parameters$xi,parameters$alfa,parameters$k)