np.loc.test {nptest} | R Documentation |
Nonparametric Tests of Location Parameters
Description
Performs one and two sample nonparametric (randomization) tests of location parameters, i.e., means and medians. Implements univariate and multivariate tests using eight different test statistics: Student's one-sample t-test, Johnson's modified t-test, Wilcoxon's Signed Rank test, Fisher's Sign test, Student's two-sample t-test, Welch's t-test, Wilcoxon's Rank Sum test (i.e., Mann-Whitney's U
test), and a studentized Wilcoxon test for unequal variances.
Usage
np.loc.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
median.test = FALSE, symmetric = TRUE,
R = 9999, parallel = FALSE, cl = NULL,
perm.dist = TRUE, na.rm = TRUE)
Arguments
x |
Numeric vector (or matrix) of data values. |
y |
Optional numeric vector (or matrix) of data values. |
alternative |
Alternative hypothesis. Must be either "two.sided" ( |
mu |
Null hypothesis value |
paired |
Logical indicating whether you want a paired location test. |
var.equal |
Logical indicating whether to treat the two variances as being equal. |
median.test |
Logical indicating whether the location test is for the median. Default is |
symmetric |
Logical indicating if the distribution of |
R |
Number of resamples for the permutation test (positive integer). |
parallel |
Logical indicating if the |
cl |
Cluster for parallel computing, which is used when |
perm.dist |
Logical indicating if the permutation distribution should be returned. |
na.rm |
If |
Details
One sample | \mu is the mean (or median) of X |
Paired | \mu is the mean (or median) of X - Y |
Two sample | \mu is the mean difference E(X) - E(Y) |
or the median of the differences X - Y |
|
For one (or paired) sample tests, the different test statistics can be obtained using
median.test = F | median.test = T |
|
symmetric = F | Johnson t test | Fisher sign test |
symmetric = T | Student t test | Wilcoxon signed rank test |
For two sample tests, the different test statistics can be obtained using
median.test = F | median.test = T |
|
var.equal = F | Welch t test | Studentized Wilcoxon test |
var.equal = T | Student t test | Wilcoxon rank sum test |
Value
statistic |
Test statistic value. |
p.value |
p-value for testing |
perm.dist |
Permutation distribution of |
alternative |
Alternative hypothesis. |
null.value |
Null hypothesis value for |
var.equal |
Assuming equal variances? Only for two sample tests. |
median.test |
Testing the median? |
symmetric |
Assuming symmetry? Only for one sample and paired tests. |
R |
Number of resamples. |
exact |
Exact permutation test? See Note. |
estimate |
Estimate of parameter |
univariate |
Univariate test statistic value for |
adj.p.value |
Adjusted p-value for testing significance of |
method |
Method used for permutation test. See Details. |
Multivariate Tests
If the input x
(and possibly y
) is a matrix with m > 1
columns, the multivariate test statistic is defined as
alternative | statistic |
two.sided | max(abs(univariate)) |
less | min(univariate) |
greater | max(univariate) |
The global null hypothesis (across all m
variables) is tested by comparing the observed statistic
to the permutation distribution perm.dist
. This produces the p.value
for testing the global null hypothesis.
The local null hypothesis (separately for each variable) is tested by comparing the univariate
test statistic to perm.dist
. This produces the adjusted p-values (adj.p.values
), which control the familywise Type I error rate across the m
tests.
Note
For one sample (or paired) tests, the permutation test will be exact when the requested number of resamples R
is greater than 2^n
minus one. In this case, the permutation distribution perm.dist
contains all 2^n
possible values of the test statistic.
For two sample tests, the permutation test will be exact when the requested number of resamples R
is greater than choose(N, n)
minus one, where m = length(x)
, n = length(y)
, and N = m + n
. In this case, the permutation distribution perm.dist
contains all choose(N, n)
possible values of the test statistic.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Blair, R. C., Higgins, J. J., Karniski, W., & Kromrey, J. D. (1994). A study of multivariate permutation tests which may replace Hotelling's T2 test in prescribed circumstances. Multivariate Behavioral Research, 29(2), 141-163. doi: 10.1207/s15327906mbr2902_2
Chung, E., & Romano, J. P. (2016). Asymptotically valid and exact permutation tests based on two-sample U-statistics. Journal of Statistical Planning and Inference, 168, 97-105. doi: 10.1016/j.jspi.2015.07.004
Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Helwig, N. E. (2019). Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Computational Statistics, 11(2), e1457. doi: 10.1002/wics.1457
Janssen, A. (1997). Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem. Statistics & Probability Letters , 36 (1), 9-21. doi: 10.1016/S0167-7152(97)00043-6
Johnson, N. J. (1978). Modified t tests and confidence intervals for asymmetrical populations. Journal of the American Statistical Association, 73 (363), 536-544. doi: 10.2307/2286597
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals Of Mathematical Statistics, 18(1), 50-60. doi: 10.1214/aoms/1177730491
Pitman, E. J. G. (1937a). Significance tests which may be applied to samples from any populations. Supplement to the Journal of the Royal Statistical Society, 4(1), 119-130. doi: 10.2307/2984124
Romano, J. P. (1990). On the behavior of randomization tests without a group invariance assumption. Journal of the American Statistical Association, 85(411), 686-692. doi: 10.1080/01621459.1990.10474928
Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. doi: 10.2307/2331554
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 39(3/4), 350-362. doi: 10.2307/2332010
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83. doi: 10.2307/3001968
See Also
plot.np.loc.test
S3 plotting method for visualizing the results
Examples
######******###### UNIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
# one sample t-test
set.seed(0)
np.loc.test(x)
# Johnson t-test
set.seed(0)
np.loc.test(x, symmetric = FALSE)
# Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, median.test = TRUE)
# Fisher sign test
set.seed(0)
np.loc.test(x, median.test = TRUE, symmetric = FALSE)
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- rnorm(n, mean = 0.5)
y <- rnorm(n)
# paired t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE)
# paired Johnson t-test
set.seed(0)
np.loc.test(x, y, paired = TRUE, symmetric = FALSE)
# paired Wilcoxon signed rank test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE)
# paired Fisher sign test
set.seed(0)
np.loc.test(x, y, paired = TRUE, median.test = TRUE, symmetric = FALSE)
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- rnorm(m, mean = 0.5)
y <- rnorm(n)
# Welch t-test
set.seed(0)
np.loc.test(x, y)
# Student t-test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE)
# Studentized Wilcoxon test
set.seed(0)
np.loc.test(x, y, median.test = TRUE)
# Wilcoxon rank sum test
set.seed(0)
np.loc.test(x, y, var.equal = TRUE, median.test = TRUE)
## Not run:
######******###### MULTIVARIATE ######******######
###***### ONE SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
# multivariate one sample t-test
set.seed(0)
ptest <- np.loc.test(x)
ptest
ptest$univariate
ptest$adj.p.values
###***### PAIRED SAMPLE ###***###
# generate data
set.seed(1)
n <- 10
x <- cbind(rnorm(n, mean = 0.5),
rnorm(n, mean = 1),
rnorm(n, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate paired t-test
set.seed(0)
ptest <- np.loc.test(x, y, paired = TRUE)
ptest
ptest$univariate
ptest$adj.p.values
###***### TWO SAMPLE ###***###
# generate data
set.seed(1)
m <- 7
n <- 8
x <- cbind(rnorm(m, mean = 0.5),
rnorm(m, mean = 1),
rnorm(m, mean = 1.5))
y <- matrix(rnorm(n * 3), nrow = n, ncol = 3)
# multivariate Welch t-test
set.seed(0)
ptest <- np.loc.test(x, y)
ptest
ptest$univariate
ptest$adj.p.values
## End(Not run)