spherical {npreg} | R Documentation |
Spherical Spline Basis and Penalty
Description
Generate the smoothing spline basis and penalty matrix for a spherical spline. This basis is designed for predictors where the values are points on a sphere.
Usage
basis.sph(x, knots, m = 2, intercept = FALSE, ridge = FALSE)
penalty.sph(x, m = 2)
Arguments
x |
Predictor variables (basis) or spline knots (penalty). Matrix of dimension |
knots |
Spline knots. Matrix of dimension |
m |
Penalty order. "m=2" for 2nd order spherical spline, "m=3" for 3rd order, and "m=4" for 4th order. |
intercept |
If |
ridge |
If |
Details
Generates a basis function or penalty matrix used to fit spherical splines of order 2, 3, or 4.
With an intercept included, the basis function matrix has the form
X = [X_0, X_1]
where matrix X_0
is an n
by 1 matrix of ones, and X_1
is a matrix of dimension n
by r
.
The X_0
matrix contains the "parametric part" of the basis (i.e., the intercept).
The matrix X_1
contains the "nonparametric part" of the basis, which consists of the reproducing kernel function
\rho(x, y) = [q_{2m-2}(x.y) - \alpha] / \beta
evaluated at all combinations of x
and knots
. Note that \alpha = 1/(2m - 1)
and \beta = 2\pi(2m-2)!
are constants, q_{2m-2}(.)
is the spherical spline semi-kernel function, and x.y
denotes the cosine of the angle between x
and y
(see References).
The penalty matrix consists of the reproducing kernel function
\rho(x, y) = [q_{2m-2}(x.y) - \alpha] / \beta
evaluated at all combinations of x
.
Value
Basis: Matrix of dimension c(length(x), df)
where df = nrow(knots) + intercept
.
Penalty: Matrix of dimension c(r, r)
where r = nrow(x)
is the number of knots.
Note
The inputs x
and knots
must have the same dimension.
If ridge = TRUE
, the penalty matrix is the identity matrix.
Author(s)
Nathaniel E. Helwig <helwig@umn.edu>
References
Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag. doi:10.1007/978-1-4614-5369-7
Wahba, G (1981). Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific Computing, 2(1), 5-16. doi:10.1137/0902002
See Also
See thinplate
for a thin plate spline basis and penalty.
Examples
######***###### standard parameterization ######***######
# function with spherical predictors
set.seed(0)
n <- 1000
myfun <- function(x){
sin(pi*x[,1]) + cos(2*pi*x[,2]) + cos(pi*x[,3])
}
x3d <- cbind(runif(n), runif(n), runif(n)) - 0.5
x3d <- t(apply(x3d, 1, function(x) x / sqrt(sum(x^2))))
eta <- myfun(x3d)
y <- eta + rnorm(n, sd = 0.5)
# convert x latitude and longitude
x <- cbind(latitude = acos(x3d[,3]) - pi/2,
longitude = atan2(x3d[,2], x3d[,1])) * (180 / pi)
# select first 100 points as knots
knots <- x[1:100,]
# cubic spherical spline basis
X <- basis.sph(x, knots, intercept = TRUE)
# cubic spherical spline penalty
Q <- penalty.sph(knots)
# pad Q with zeros (for intercept)
Q <- rbind(0, cbind(0, Q))
# define smoothing parameter
lambda <- 1e-5
# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)
# estimate eta
yhat <- X %*% coefs
# check rmse
sqrt(mean((eta - yhat)^2))
######***###### ridge parameterization ######***######
# function with spherical predictors
set.seed(0)
n <- 1000
myfun <- function(x){
sin(pi*x[,1]) + cos(2*pi*x[,2]) + cos(pi*x[,3])
}
x3d <- cbind(runif(n), runif(n), runif(n)) - 0.5
x3d <- t(apply(x3d, 1, function(x) x / sqrt(sum(x^2))))
eta <- myfun(x3d)
y <- eta + rnorm(n, sd = 0.5)
# convert x latitude and longitude
x <- cbind(latitude = acos(x3d[,3]) - pi/2,
longitude = atan2(x3d[,2], x3d[,1])) * (180 / pi)
# select first 100 points as knots
knots <- x[1:100,]
# cubic spherical spline basis
X <- basis.sph(x, knots, intercept = TRUE, ridge = TRUE)
# cubic spherical spline penalty (ridge)
Q <- diag(rep(c(0, 1), times = c(1, ncol(X) - 1)))
# define smoothing parameter
lambda <- 1e-5
# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)
# estimate eta
yhat <- X %*% coefs
# check rmse
sqrt(mean((eta - yhat)^2))